Instruction-Level Parallelism (ILP)

Fine-grained parallelism

Obtained by:

- instruction overlap in a pipeline
- executing instructions in parallel (later, with multiple instruction issue)

In contrast to:

- **loop-level** parallelism (medium-grained)
- process-level or task-level or thread-level parallelism (coarsegrained)

Instruction-Level Parallelism (ILP)

Can be exploited when instruction operands are independent of each other, for example,

- two instructions are **independent** if their operands are different
- an example of independent instructions

ld	R1,	0(R2)	
or	R7,	R3,	R8

Dependences

data dependence: arises from the flow of values through programs

- consumer instruction gets a value from a producer instruction
- determines the order in which instructions can be executed

ld R1, 32(R3)			
add R3,	R1,	R8	

name dependence: instructions use the same register but no flow of data between them

- antidependence
- output dependence

Dependences

control dependence

- arises from the flow of control
- instructions after a branch depend on the value of the branch's condition variable

	beqz R2, target	
	lw r1, 0(r3)	
target:	add r1,	

Dependences inhibit ILP

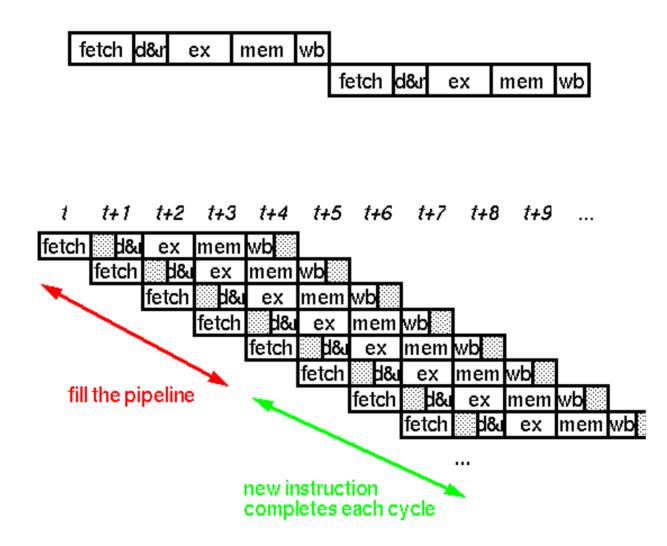
Instruction-Level Parallelism (ILP)

ILP is important for executing instructions in parallel and hiding latencies

- each thread (program) has very little ILP
- tons of techniques to increase it

Pipelining

Implementation technique (but it is visible to the architecture)


- overlaps execution of different instructions
- execute all steps in the execution cycle simultaneously, but on different instructions

Exploits ILP by executing several instructions "in parallel"

Goal is to increase instruction throughput

optimal speedup =
$$\frac{T_{\text{without pipe}}}{T_{\text{with pipe}}} = \frac{i \times n}{i + n - 1} \approx \# \text{ of pipe stages}$$

Pipelining

Pipelining

Not that simple!

- pipeline hazards (structural, data, control)
 - place a soft "limit" on the number of stages
- increase instruction latency (a little)
 - write & read pipeline registers for data that is computed in a stage
 - time for clock & control lines to reach all stages
 - all stages are the same length which is determined by the longest stage
 - stage length determines clock cycle time

IBM Stretch (1961): the first general-purpose pipelined computer

Hazards

Structural hazards

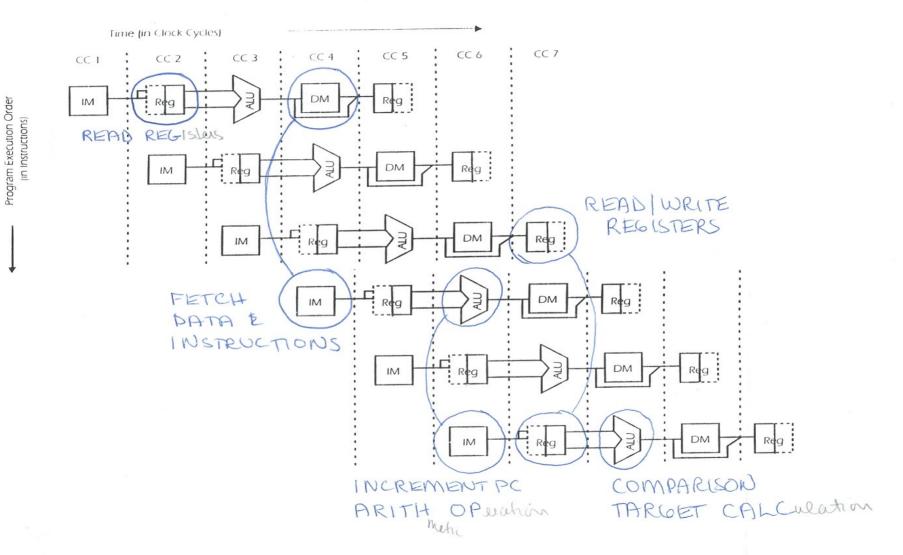
Data hazards

Control hazards

What happens on a hazard

- instruction that caused the hazard & previous instructions complete
- all subsequent instructions stall until the hazard is removed (in-order execution)
- only instructions that depend on the instruction that caused the hazard stall (out-of-order execution)

Structural Hazards


Cause: instructions in different stages want to use the same resource in the same cycle

e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:

- more hardware (eliminate the hazard)
- stall (so still execute correct programs)
 - less hardware, lower cost
 - only for big hardware components

STRUCTURAL HAZARDS: EXAMPLES

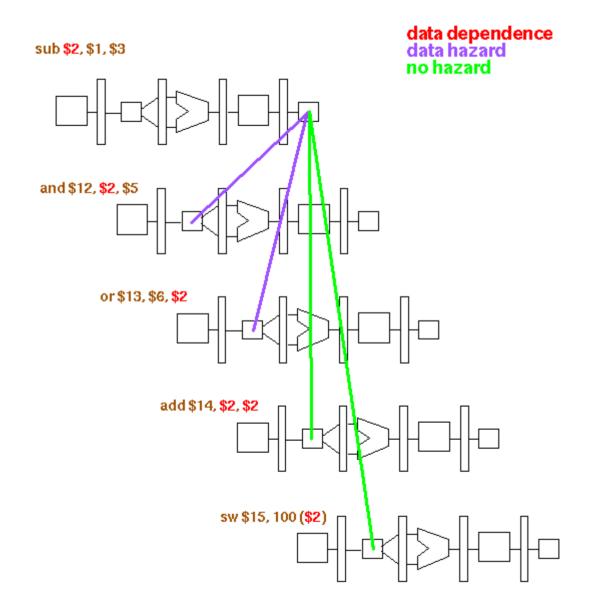
Data Hazards

Cause:

- an instruction early in the pipeline needs the result produced by an instruction farther down the pipeline before it is written to a register
- would not have occurred if the implementation was not pipelined

Types

RAW (data: flow), WAR (name: antidependence), WAW (name: output)

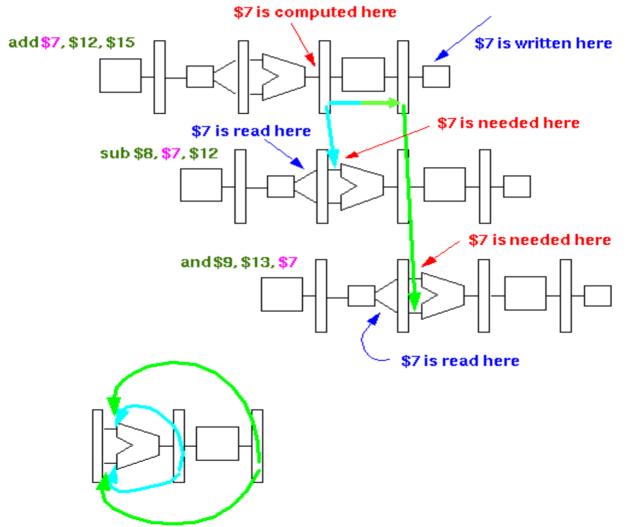

HW solutions

- forwarding hardware (eliminate the hazard)
- stall via pipelined interlocks

Compiler solution

code scheduling (for loads)

Dependences vs. Hazards


Spring 2008

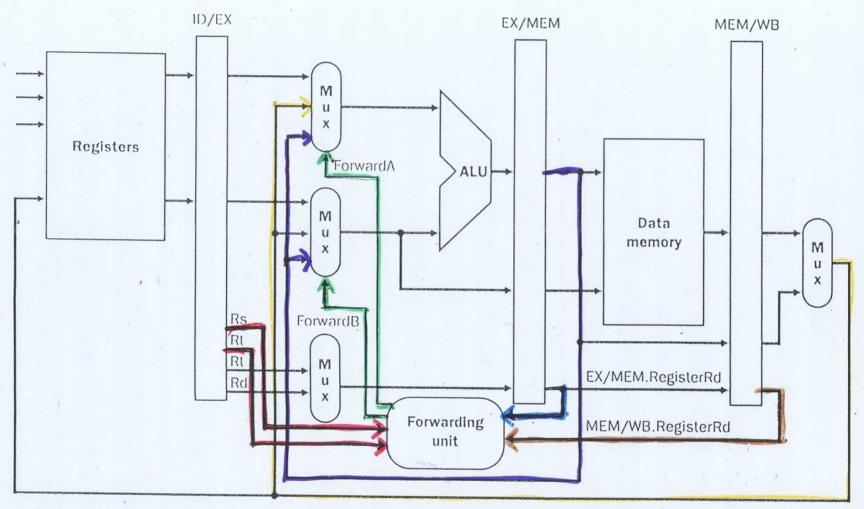
Forwarding

Forwarding (also called bypassing):

- output of one stage (the result in that stage's pipeline register) is bused (bypassed) to the input of a previous stage
- why forwarding is possible
 - results are computed 1 or more stages before they are written to a register
 - at the end of the EX stage for computational instructions
 - at the end of MEM for a load
 - results are used 1 or more stages after registers are read
- if you forward a result to an ALU input as soon as it has been computed, you can eliminate the hazard or reduce stalling

Forwarding Example

Spring 200


Forwarding Implementation

Forwarding unit checks to see if values must be forwarded:

- between instructions in ID and EX
 - compare the R-type destination register number in EX/MEM pipeline register to each source register number in ID/EX
- between instructions in ID and MEM
 - compare the R-type destination register number in MEM/WB to each source register number in ID/EX

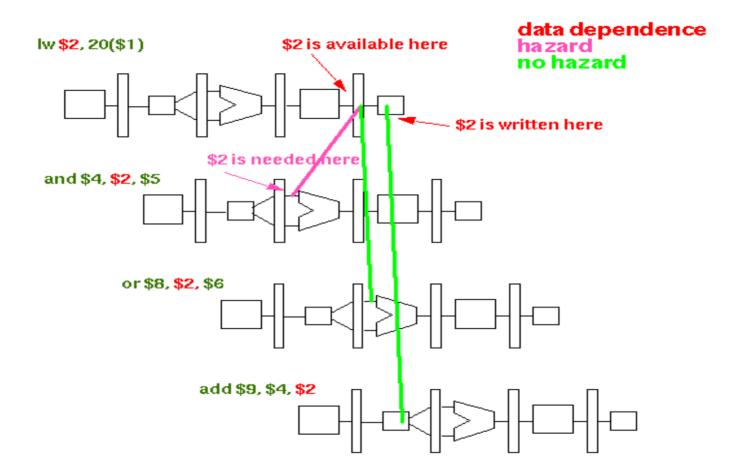
If a match, then forward the appropriate result values to an ALU source

• bus a value from **EX/MEM** or **MEM/WB** to an ALU source

b. With forwarding

Forwarding Hardware

Hardware to implement forwarding:


- destination register number in pipeline registers (but need it anyway because we need to know which register to write when storing an ALU or load result)
- source register numbers (probably only one, e.g., rs on MIPS R2/3000) is extra)
- a comparator for each source-destination register pair
- buses to ship data and register numbers the **BIG** cost
- larger ALU MUXes for 2 bypass values

Loads

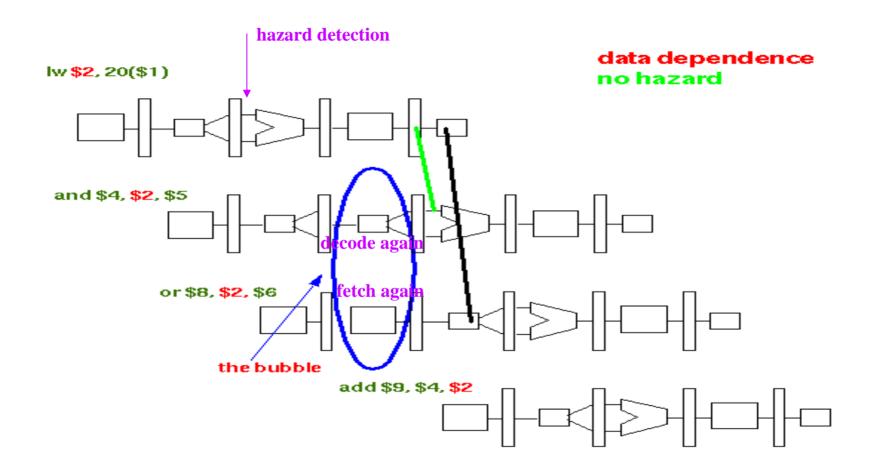
Loads

- data hazard caused by a load instruction & an immediate use of the loaded value
- forwarding won't eliminate the hazard why? data not back from memory until the end of the MEM stage
- 2 solutions used together
 - stall via pipelined interlocks
 - schedule independent instructions into the load delay slot (a pipeline hazard that is exposed to the compiler) so that there will be no stall

Implementing Pipelined Interlocks

Detecting a stall situation

Hazard detection unit stalls the use after a load


- does the destination register number of the load = either source register number in the next instruction?
 - compare the load write register number in ID/EX to each read register number in IF/ID
- is the instruction in EX a load?
- \Rightarrow if yes, stall the pipe 1 cycle

Implementing Pipelined Interlocks

How stalling is implemented:

- nullify the instruction in the ID stage, the one that uses the loaded value
 - change EX, MEM, WB control signals in ID/EX pipeline register to 0
 - the instruction in the ID stage will have no side effects as it passes down the pipeline
- repeat the instructions in ID & IF stages
 - disable writing the PC the same instruction will be fetched again
 - disable writing the IF/ID pipeline register the load use instruction will be decoded & its registers read again

Loads

Implementing Pipelined Interlocks

Hardware to implement stalling:

- rt register number in ID/EX pipeline register (but need it anyway because we need to know what register to write when storing load data)
- both source register numbers in IF/ID pipeline register (already there)
- a comparator for each source-destination register pair
- buses to ship register numbers
- write enable/disable for PC
- write enable/disable for the IF/ID pipeline register
- a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway

Control Hazards

Cause: condition & target determined after next fetch Early HW solutions

- stall
- assume an outcome & flush pipeline if wrong
- move branch resolution hardware forward in the pipeline

Compiler solutions

- code scheduling
- static branch prediction

Today's HW solutions

• dynamic branch prediction