
Out-of-Order Execution

Several implementations
• out-of-order completion

• CDC 6600 with scoreboarding
• IBM 360/91 with Tomasulo’s algorithm based on reservation 

stations
• out-of-order completion leads to:

• imprecise interrupts
• WAR hazards
• WAW hazards

• in-order completion
• MIPS R10000/R12000 & Alpha 21264/21364 with large 

physical register file & register renaming
• Intel Pentium Pro/Pentium III with the reorder buffer

Spring 2008 CSE 471 - Tomasulo 1



Out-of-order Hardware

In order to compute correct results, need to keep track of:
• which instruction is in which stage of the pipeline
• which registers are being used for reading/writing & by which 

instructions
• which operands are available
• which instructions have completed

Each scheme has different hardware structures & different algorithms to do 
this

Spring 2008 CSE 471 - Tomasulo 2



Tomasulo’s Algorithm 

Tomasulo’s Algorithm (IBM 360/91)
• out-of-order execution capability plus register renaming

Motivation
• long FP delays
• only 4 FP registers
• wanted common compiler for all implementations

Spring 2008 CSE 471 - Tomasulo 3



Tomasulo’s Algorithm 

Key features & hardware structures
• reservation stations
• distributed hazard detection & execution control

• forwarding to eliminate RAW hazards
• register renaming to eliminate WAR & WAW hazards
• deciding which instruction to execute next

• common data bus
• dynamic memory disambiguation

Spring 2008 CSE 471 - Tomasulo 4



Spring 2008 CSE 471 - Tomasulo 5

Hardware for Tomasulo’s Algorithm



Tomasulo’s Algorithm: Key Features

Reservation stations
• buffers for functional units that hold instructions stalled for RAW 

hazards & their operands
• source operands can be values or names of other reservation 

station entries or load buffer entries that will produce the value
• both operands don’t have to be available at the same time
• when both operand values have been computed, an instruction 

can be dispatched to its functional unit

Spring 2008 CSE 471 - Tomasulo 6



Reservation Stations

RAW hazards eliminated by forwarding
• source operand values that are computed after the registers are 

read are known by the functional unit or load buffer that will 
produce them

• results are immediately forwarded to functional units on the 
common data bus

• don’t have to wait until for value to be written into the register file
Eliminate WAR & WAW hazards by register renaming

• name-dependent instructions refer to reservation station or load 
buffer locations for their sources, not the registers (as above)

• the last writer to the register updates it
• more reservation stations than registers, so eliminates more name 

dependences than a compiler can & exploit more parallelism
• examples on next slide

Spring 2008 CSE 471 - Tomasulo 7



Reservation Stations

Register renaming eliminates WAR & WAW hazards
• Tag in the reservation station/register file/store buffer indicates

where the result will come from

Handling WAW hazards
addf F1,F0,F8 F1’s tag originally specifies addf’s entry in the 

reservation station
...
subf F1,F8,F14 F1’s tag now specifies subf’s entry in the 

reservation station
no register will claim the addf result if it completes last

Spring 2008 CSE 471 - Tomasulo 8



Reservation Stations

Handling WAR hazards
ld F1,_ register F1’s tag originally specifies the 

entry in the load buffer for the ld
addf _, F1,_ addf’s reservation station entry specifies 

ld’s entry in the load buffer for source 
operand 1

subf F1,_ register F1’s tag now specifies the 
registration station entry that holds subf

Does not matter if ld finishes after subf; F1 will no longer 
claim it & addf will use its tag to get the loaded value

Spring 2008 CSE 471 - Tomasulo 9



Tomasulo’s Algorithm: More Key Features

Common data bus (CDB)
• connects functional units & load buffer to reservations stations, 

registers, store buffer
• ships results to all hardware that could want an updated value
• eliminates RAW hazards: not have to wait until registers are written 

before consuming a value

Distributed hazard detection & execution control
• each reservation station decides when to dispatch instructions to its 

function unit
• each hardware data structure entry that needs values grabs the 

values itself: snooping
• reservation stations, store buffer entries & registers have a tag 

saying where their data should come from
• when it matches the data producer’s tag on the bus, reservation 

stations, store buffer entries & registers grab the data

Spring 2008 CSE 471 - Tomasulo 10



Tomasulo’s Algorithm: More Key Features

Dynamic memory disambiguation
• the issue: don’t want loads to bypass stores to the same location
• the solution: 

• loads associatively check addresses in store buffer
• if an address match, grab the value

Spring 2008 CSE 471 - Tomasulo 11



Tomasulo’s Algorithm: Execution Steps

Tomasulo functions
(assume the instruction has been fetched)

• issue & read
• structural hazard detection for reservation stations & load/store 

buffers
• issue if no hazard
• stall if hazard

• read registers for source operands
• put into reservation stations if values are in them
• put tag of producing functional unit or load buffer if not

(renaming the registers to eliminate WAR & WAW hazards)

Spring 2008 CSE 471 - Tomasulo 12



Tomasulo’s Algorithm: Execution Steps

• execute
• RAW hazard detection
• snoop on common data bus for missing operands
• dispatch instruction to a functional unit when obtain both 

operand values
• execute the operation
• calculate effective address & start memory operation

• write
• broadcast result & reservation station id (tag) on the common 

data bus
• reservation stations, registers & store buffer entries obtain the 

value through snooping

Spring 2008 CSE 471 - Tomasulo 13



Tomasulo’s Algorithm: State

Tomasulo state: the information that the hardware needs to control 
distributed execution
• operation of the issued instructions waiting for execution (Op)

• located in reservation stations
• tags that indicate the producer for a source operand (Q)

• located in reservation stations, registers, store buffer entries
• what unit (reservation station or load buffer) will produce the 

operand
• special value (blank for us) if value already there

• operand values in reservation stations & load/store buffers (V)
• reservation station & load/store buffer busy fields (Busy)
• addresses in load/store buffers (for memory disambiguation)

Spring 2008 CSE 471 - Tomasulo 14



Spring 2008 CSE 471 - Tomasulo 15

Example in the Book: 1
Instruction Status Table

first load
has

executed



Example in the Book: 2

Spring 2008 CSE 471 - Tomasulo 16

Instruction Status Table

second load
has

executed

yes
yes
yes

(Load2)
(Load2)

(Load2)

()

yes



Example in the Book: 3

Spring 2008 CSE 471 - Tomasulo 17

Instruction Status Table

subtract
has

executed

yes
yes
yes

(Load2)

(Load2)

()

yes



Example in the Book: 4

Spring 2008 CSE 471 - Tomasulo 18

Instruction Status Table

add
has

executed

yes
yes
yes

(Load2)

()

yes



Example in the Book: 5

Spring 2008 CSE 471 - Tomasulo 19

Instruction Status Table

multiply
has

executed

yes
yes
yes

()

yes



Tomasulo’s Algorithm

Dynamic loop unrolling

• addf and st in each iteration has a different tag for the F0 value
• only the last iteration writes to F0
• effectively completely unrolling the loop

LOOP: ld F0, 0(R1)

addf F0, F0, F1

st F0, 0(R1)

sub R1, R1, #8

bnez R1, LOOP

Spring 2008 CSE 471 - Tomasulo 20



Tomasulo’s Algorithm

Dynamic loop unrolling

Nice features relative to static loop unrolling
• effectively increases number of registers (# reservations stations, 

load buffer entries, registers) but without register pressure
• dynamic memory disambiguation to prevent loads after stores with

the same address from getting old data if they execute first
• simpler compiler

Downside
• loop control instructions still executed
• much more complex hardware

Spring 2008 CSE 471 - Tomasulo 21



Dynamic Scheduling

Advantages over static scheduling
• more places to hold register values
• makes dispatch decisions dynamically, based on when instructions

actually complete & operands are available
• can completely disambiguate memory references

Effects of these advantages
⇒ more effective at exploiting parallelism (especially given compiler 

technology at the time)
• increased instruction throughput
• increased functional unit utilization

⇒ efficient execution of code compiled for a different pipeline
⇒ simpler compiler in theory

Use both!

Spring 2008 CSE 471 - Tomasulo 22


	Out-of-Order Execution
	Out-of-order Hardware
	Tomasulo’s Algorithm
	Tomasulo’s Algorithm
	Hardware for Tomasulo’s Algorithm
	Tomasulo’s Algorithm: Key Features
	Reservation Stations
	Reservation Stations
	Reservation Stations
	Tomasulo’s Algorithm: More Key Features
	Tomasulo’s Algorithm: More Key Features
	Tomasulo’s Algorithm: Execution Steps
	Tomasulo’s Algorithm: Execution Steps
	Tomasulo’s Algorithm: State
	Example in the Book: 1
	Example in the Book: 2
	Example in the Book: 3
	Example in the Book: 4
	Example in the Book: 5
	Tomasulo’s Algorithm
	Tomasulo’s Algorithm
	Dynamic Scheduling

