Program Problem Size Instructions (Billions) Synchronization Primitives
Total | FLOPS | Reads | Writes Locks Barriers | Conditions

blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0

bodytrack 4 frames, 4,000 particles | 14.03 4.22 3.63 0.95 114,621 619 2,042

canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0

dedup 184 MB data 37.1 0 11.71 3.13 158,979 0 1,619

facesim 1 frame, 29.90 9.10 10.05 4.29 14,541 0 3,137
372,126 tetrahedra

ferret 256 queries, 23.97 4.51 7.49 1.18 345,778 0 1255
34,973 images

fluidanimate 5 frames, 14.06 2.49 4.80 1.15 17,771,909 0 0
300,000 particles

fregmine 990,000 transactions 33.45 0.00 11.31 5.24 990,025 0 0

streamcluster 16,384 points per block, | 22.12 11.6 9.42 0.06 191 129,600 127
1 block

swaptions 64 swaptions, 14.11 2.62 5.08 1.16 23 0 0
20,000 simulations

vips 1 image, 31.21 4.79 6.71 1.63 33,586 0 6,361
2662 x 5500 pixels

X264 128 frames, 32.43 8.76 9.01 3.11 16,767 0 1,056
640 x 360 pixels

Table 1: Breakdown of instructions and synchronization primitives for input set simlarge on a system with 8 cores. All numbers
are totals across all threads. Numbers for synchronization primitives also include primitives in system libraries. ''Locks'" and
""Barriers' are all lock- and barrier-based synchronizations, ''Conditions'' are all waits on condition variables.

test and simdev are merely intended for testing and develop-
ment and should not be used for scientific studies. The three sim-
ulator inputs for studies vary in size, but the general trend is that
larger input sets contain bigger working sets and more parallelism.
Finally, the native input set is intended for performance measure-
ments on real machines and exceeds the computational demands
which are generally considered feasible for simulation by orders of
magnitude. Table 1 shows a breakdown of instructions and syn-
chronization primitives of the simlarge input set which we used
for the characterization study.

3.2 Workloads

The following workloads are part of the PARSEC suite:

blackscholes This application is an Intel RMS benchmark. It cal-
culates the prices for a portfolio of European options ana-
lytically with the Black-Scholes partial differential equation
(PDE) [7]. There is no closed-form expression for the Black-
Scholes equation and as such it must be computed numeri-
cally.

bodytrack This computer vision application is an Intel RMS work-
load which tracks a human body with multiple cameras through
an image sequence [8]. This benchmark was included due
to the increasing significance of computer vision algorithms
in areas such as video surveillance, character animation and
computer interfaces.

canneal This kernel was developed by Princeton University. It
uses cache-aware simulated annealing (SA) to minimize the
routing cost of a chip design [3]. Canneal uses fine-grained
parallelism with a lock-free algorithm and a very aggressive
synchronization strategy that is based on data race recovery
instead of avoidance.

dedup This kernel was developed by Princeton University. It com-
presses a data stream with a combination of global and local
compression that is called ’deduplication’. The kernel uses
a pipelined programming model to mimic real-world imple-
mentations. The reason for the inclusion of this kernel is

that deduplication has become a mainstream method for new-
generation backup storage systems [23].

facesim This Intel RMS application was originally developed by
Stanford University. It computes a visually realistic animation
of the modeled face by simulating the underlying physics [24].
The workload was included in the benchmark suite because an
increasing number of animations employ physical simulation
to create more realistic effects.

ferret This application is based on the Ferret toolkit which is used
for content-based similarity search [16]. It was developed
by Princeton University. The reason for the inclusion in the
benchmark suite is that it represents emerging next-generation
search engines for non-text document data types. In the bench-
mark, we have configured the Ferret toolkit for image similar-
ity search. Ferret is parallelized using the pipeline model.

fluidanimate This Intel RMS application uses an extension of the
Smoothed Particle Hydrodynamics (SPH) method to simulate
an incompressible fluid for interactive animation purposes [19].
It was included in the PARSEC benchmark suite because of
the increasing significance of physics simulations for anima-
tions.

freqmine This application employs an array-based version of the
FP-growth (Frequent Pattern-growth) method [10] for Frequent
Itemset Mining (FIMI). It is an Intel RMS benchmark which
was originally developed by Concordia University. fregmine
was included in the PARSEC benchmark suite because of the
increasing use of data mining techniques.

streamcluster This RMS kernel was developed by Princeton Uni-
versity and solves the online clustering problem [21]. stream-
cluster was included in the PARSEC benchmark suite be-
cause of the importance of data mining algorithms and the
prevalence of problems with streaming characteristics.

swaptions The application is an Intel RMS workload which uses
the Heath-Jarrow-Morton (HJM) framework to price a portfo-
lio of swaptions [11]. Swaptions employs Monte Carlo (MC)
simulation to compute the prices.

vips This application is based on the VASARI Image Processing
System (VIPS) [17] which was originally developed through
several projects funded by European Union (EU) grants. The
benchmark version is derived from a print on demand service
that is offered at the National Gallery of London, which is also
the current maintainer of the system. The benchmark includes
fundamental image operations such as an affine transforma-
tion and a convolution.

x264 This application is an H.264/AVC (Advanced Video Coding)
video encoder. H.264 describes the lossy compression of a
video stream [25] and is also part of ISO/IEC MPEG-4. The
flexibility and wide range of application of the H.264 stan-
dard and its ubiquity in next-generation video systems are the
reasons for the inclusion of x264 in the PARSEC benchmark
suite.

4. METHODOLOGY

In this section we explain how we characterized the PARSEC
benchmark suite. We are interested in the following characteristics:
Parallelization PARSEC benchmarks use different parallel mod-

els which have to be analyzed in order to know whether the
programs can scale well enough for the analysis of CMPs of a
certain size.

Working sets and locality Knowledge of the cache requirements
of a workload are necessary to identify benchmarks suitable
for the study of CMP memory hierarchies.

Communication-to-computation ratio and sharing The commu-
nication patterns of a program determine the potential impact
of private caches and the on-chip network on performance.

Off-chip traffic The off-chip traffic requirements of a program are
important to understand how off-chip bandwidth limitations of
a CMP can affect performance.

In order to characterize all applications, we had to make several
trade-off decisions. Given a limited amount of computational re-
sources, higher accuracy comes at the expense of a lower number of
experiments. We followed the approach of similar studies [26, 14]
and chose faster but less accurate execution-driven simulation to
characterize the PARSEC workloads. This approach is feasible be-
cause we limit ourselves to study fundamental program properties
which should have a high degree of independence from architec-
tural details. Where possible we supply measurement results from
real machines. This methodology allowed us to gather the large
amount of data which we present in this study. We preferred ma-
chine models comparable to real processors over unrealistic models
which might have been a better match for the program needs.

4.1 Experimental Setup

We used CMPS$im [14] for our workload characterization. CMP-
$im is a plug-in for Pin [22] that simulates the cache hierarchy of
a CMP. Pin is similar to the ATOM toolkit for Compaq’s Tru64
Unix on Alpha processors. It uses dynamic binary instrumentation
to insert routines at arbitrary points in the instruction stream. For
the characterization we simulate a single-level cache hierarchy of
a CMP and vary its parameters. The baseline cache configuration
was a shared 4-way associative cache with 4 MB capacity and 64
byte lines. By default the workloads used 8 cores. All experiments
were conducted on a set of Symmetric Multiprocessor (SMP) ma-
chines with x86 processors and Linux. The programs were com-
piled with gcc 4.2.1.

Because of the large computational cost we could not perform
simulations with the native input set, instead we used the simlarge
inputs for all simulations and analytically describe any differences
between the two sets of which we know.

4.2 Methodological Limitations and Error
Margins

For their characterization of the SPLASH-2 benchmark suite,
Woo et al. fixed a timing model which they used for all experi-
ments [26]. They give two reasons: First, nondeterministic pro-
grams would otherwise be difficult to compare because different
execution paths could be taken, and second, the characteristics they
study are largely independent from an architecture. They also state
that they believe that the timing model should have only a small im-
pact on the results. While we use similar characteristics and share
this belief, we think a characterization study of multithreaded pro-
grams should nevertheless analyze the impact of nondeterminism
on the reported data. Furthermore, because our methodology is
based on execution on real machines combined with dynamic bi-
nary instrumentation, it can introduce additional latencies, and a
potential concern is that the nondeterministic thread schedule is al-
tered in a way that might affect our results in unpredictable ways.
We therefore conducted a sensitivity analysis to quantify the impact
of nondeterminism.

Alameldeen and Wood studied the variability of nondetermin-
istic programs in more detail and showed that even small pseudo-
random perturbations of memory latencies are effective to force
alternate execution paths [2]. We adopted their approach and modi-
fied CMP$im to add extra delays to its analysis functions. Because
running all experiments multiple times as Alameldeen and Wood
did would be prohibitively expensive, we instead decided to ran-
domly select a subset of all experiments for each metric which we
use and report its error margins.

The measured quantities deviated by no more than +0.04% from
the average, with the following two exceptions. The first excpetion
is metrics of data sharing. In two cases (bodytrack and swaptions)
the classification is noticeably affected by the nondeterminism of
the program. This is partially caused because shared and thread-
private data contend aggressively for a limited amount of cache ca-
pacity. The high frequency of evictions made it difficult to classify
lines and accesses as shared or private. In these cases, the maxi-
mum deviation of the number of accesses from the average was as
high as +4.71%, and the amount of sharing deviated by as much as
+15.22%. We considered this uncertainty in our study and did not
draw any conclusions where the variation of the measurements did
not allow it. The second case of high variability is when the value
of the measured quantity is very low (below 0.1% miss rate or cor-
responding ratio). In these cases the nondeterministic noise made
measurements difficult. We do not consider this a problem because
in this study we focus on trends of ratios, and quantities that small
do not have a noticeable impact. It is however an issue for the anal-
ysis of working sets if the miss rate falls below this threshold and
continues to decrease slowly. Only few programs are affected, and
our estimate of their working set sizes might be slightly off in these
cases. This is primarily an issue inherent to experimental work-
ing set analysis, since it requires well-defined points of inflection
for conclusive results. Moreover, we believe that in these cases
the working set size varies nondeterministically, and researchers
should expect slight variations for each benchmark run.

The implications of these results are twofold: First, they show
that our methodology is not susceptible to the nondeterministic
effects of multithreaded programs in a way that might invalidate
our findings. Second, they also confirm that the metrics which
we present in this paper are fundamental program properties which
cannot be distorted easily. The reported application characteristics
are likely to be preserved on a large range of architectures.

