A Comparison of x86 with Alpha

on Image Manipulation Programs

Absiract

In this paper, we compare Pentium II Xeon with Alpha 21164, based on instruction level behavior on image
manipulation prograins for the two architectures. We cover statistical information such as instruction
distribation, effect of conditional/unconditional branches, basic block sizes, length of uninterrupted code
sequences and effectiveness of static/dynamic branch prediction. Overall, the two architectures show
similar behavior on broad issues. However, there are certainly some differences in actual numbers obtained
for the two experiments, which is expected becanse the two prograins, as well as the two architectares, are
developed by different people.

Introduction

For the first experiment, we used the Visual Etch tool to instrument the Microsoft Photo Editor prograin on
Pentivem II Xeon. The second experiment was done with the tool Atom and the behavior of “xv™ was
analyzed on Alpha 21164. In both these experiments, an image was loaded and several typical irnage
manipualation tools were applied te it. These included resizing, sharpening, converting to “chalk and
charcoal”, and so on. The instrumentation tools developed for Visual Etch and Ateoin analyzed these
pregramns and preduced data for the respective platforins, which is compared in what follows.

Instruciion Mix

Although integer avithmetic and logical instructions dominated both experiments, the actual numbers for
the distribution were gquite different. The similarity, of course, arises because of the common nature of the
two programs — image manipulation -which requices arithmetic/logical instructions the wost. The

arith
Hload/store
Elbranch
H call/retum Bcallfretum
Hnew new
x86 Alpha

differences can possibly be explained by the fact that the two programs were developed by different people,
using different compilers and cther tools, and invelving different architecture specific optimizations.

e is interesting to note that the humber of FP eperations was negligible compared to integer arithmetic in
both the experiments. So both programs use integers foc internal representation and processing of images.



Conditional Branches / Stalic Prediclion

The two programs behaved similarly for conditional branches, though Alpha was slightly more consistent
in taking backward branches and not taking forward ongs. This would mean the static predictor that
predicts what we said just now would work better for the Alpha. Tt is also interesting to note that the
numbers for backward branches do indicate loops, but those for forward branches do not necessarily

Elx86
H Alpha

Forward Taken Forward Mot~ Backward Backward Mot-
1aken Taken taken

indicate any programining styles (such as forward branches mean exceptional case, otherwise fall through).

As remarked carlier, static prediction works well (and almost the same) for both cases — 72% for x86 and
76% for Alpha. But then, dynamic prediction works better even with small history size and small tables.

Basic Blocks / Uninterrupted Code Sequences

Tt is interesting to observe that the “xv™ execution showed fairly large basic block sizes (-9 instructions)
compared to the Photo Editor execution (~3). The same thing also holds for the length of uninterrupted
code sequences (12 vs. 8).

124

104

84

6 Hx86
% B Alpha
o4

ok

Basic block Uninterrupied
size code seq

The difference can again be ascribed to different programiners, different tools and different architectures.
However, for both experiments, lengths of uninterrupted code sequences are generally much more than
(about twice) the actual basic block sizes. This is something that we expect because of juinp Iabels and not-
taken branches.

Dynamic Branch Prediclion

In the experiments that were condacted, Alpha seemed to have much better performance for the correlated
dynainic predictor. For example, a (1024-4-2)-predictor (i.e. 1024 predictien table size, 4 bit histery, 2 bit
predictor) reached upto 97.1% for the execation of “xv” on Alpha 21164, whereas the best for Photo Editor



on P Il Xeon was 95.2% using a (4096-4-2)-predictor. This is definitely contrary to our expectations
because x86, with its long pipelines, should be a better performer when it comnes to branch prediction — this
is the only way i can avoid huge mis-prediction penalties. One possible explanation for the numbers
obtained could be that the specific programs chosen had this behavior and this does not hold for the two
architectures in general. A second possibility, which we don’t preclude, is that there was some error in
collecting data for one of the two architectures. A third reason could be that Alpha and x86 actually employ
sotre variations of the technique that we used to predict branches dynamically, and hence, in reality,
achieve different success rates.

1004

804

60+

404 Hx86
204 B Alpha

- 3 o
EestDyn Average WorstDyn Static
Dyn

In spite of these differences, there ave certain deductions that are comimen for the two architectares. First,
the dynamic branch predictors pecforn mach better then the simple static scheine, especially on forward
branches. Second, some of the cache parameters have very little influence. For instance, for the particular
image processing programs, varying the size of the prediction table did not change prediction quality
significantly. This is probably due to a lacge number of loops with fairly few conditional branches. Third,
the size of the global history and the nuinber of bits of prediction have the most impact on predictor
performance. Changing fromn two bits te one bit of prediction and from four bits to zero bits of global
history can wersen the mis-prediction cate by 3-4%.

Conclusion

The two architectures show different statistics in terms of actual distribution of instructions and sizes of
basic blocks / uninterrupted code sequences. However, general trends reimain the same — instructions are
mostly integer arithmetic, uninterrupted code sequences are much longer than actual basic blocks, and
conditional branches work most as predicted statically (at for backward branches, which occar much more
often than forward branches}. Static prediction works better on x86 than on Alpha whereas it’s the ather
way for dynamic prediction. However, for either architecture, dynamic prediction is much better, even with
a sinall table and few history bits.



