
Advanced Caching Techniques

Approaches to improving memory system performance
• eliminate memory accesses/operations
• decrease the number of misses
• decrease the miss penalty
• decrease the cache/memory access times
• hide memory latencies
• increase cache throughput
• increase memory bandwidth

New techniques address particular components of memory system
performance

Spring 2010 1CSE 471 - Advanced Caching
Techniques

Handling a Cache Miss the Old Way

(1) Send the address & read operation to the next level of the hierarchy
(2) Wait for the data to arrive
(3) Update the cache entry with data*, rewrite the tag, turn the valid bit on, clear

the dirty bit (if data cache)
(4) Resend the memory address; this time there will be a hit.

* There are variations:
• get data before replace the block
• send the requested word to the CPU as soon as it arrives at the cache

(early restart)
• requested word is sent from memory first; then the rest of the block

follows (requested word first)
How do the variations improve memory system performance?

Spring 2010 2CSE 471 - Advanced Caching
Techniques

Non-blocking Caches

Non-blocking cache (lockup-free cache)
• allows the CPU to continue executing instructions while a miss is

handled
• some processors allow only 1 outstanding miss (“hit under miss”)
• some processors allow multiple misses outstanding (“miss under miss”)
• miss status holding registers (MSHR)

• hardware structure for tracking outstanding misses
• physical address of the block
• which word in the block
• destination register number (if data)
• mechanism to merge requests to the same block
• mechanism to insure accesses to the same location execute in

program order

Spring 2010 3CSE 471 - Advanced Caching
Techniques

Non-blocking Caches

Non-blocking cache (lockup-free cache)
• can be used with both in-order and out-of-order processors

• in-order processors stall when an instruction that uses the load
data is the next instruction to be executed

• out-of-order processors can execute instructions after the load
consumer

How do non-blocking caches improve memory system performance?

Spring 2010 4CSE 471 - Advanced Caching
Techniques

Victim Cache

Victim cache
• small fully-associative cache

• contains the most recently replaced blocks of a direct-mapped L1
cache

• L1 cache miss & victim cache hit, swap the direct-mapped block
and victim cache block

• both miss, L1 block goes to victim cache
• alternative to 2-way set-associative cache

How do victim caches improve memory system performance?

Why do victim caches work?

Spring 2010 5CSE 471 - Advanced Caching
Techniques

Sub-block Placement

Divide a block into sub-blocks

• sub-block = unit of transfer on a cache miss
• valid bit/sub-block
• misses:

• block-level miss: tags didn’t match
• sub-block-level miss: tags matched, valid bit was clear

+ the transfer time of a sub-block
+ fewer tags than if each block was the size of a subblock
- less implicit prefetching

How does sub-block placement improve memory system performance?

tag I data V data V data I data
tag I data V data V data V data
tag V data V data V data V data
tag I data I data I data I data

Spring 2010 6CSE 471 - Advanced Caching
Techniques

Pipelined Cache Access

Pipelined cache access
• simple 2-stage pipeline

• access the cache
• data transfer back to CPU
• tag check & hit/miss logic with the shorter of the two stages

How do pipelined caches improve memory system performance?

Spring 2010 7CSE 471 - Advanced Caching
Techniques

Contains instructions from the dynamic instruction stream
• fetch statically noncontiguous instructions in a single cycle, called a

trace
• limit on # basic blocks & # instructions in a trace

instructions may appear more than once
• Indexed with PC & prediction bit

• traces can contain decoded instructions
• particularly useful for CISC architectures

Trace Cache

Spring 2010 8CSE 471 - Advanced Caching
Techniques

B4: 5 instr

B3: 8 instrB2: 4 instr

B1: 6 instr

Trace Cache

Advantages/disadvantages of a trace cache
+

-

-

Effect on memory system performance?

Spring 2010 9CSE 471 - Advanced Caching
Techniques

Cache-friendly Compiler Optimizations

Exploit spatial locality
• schedule for array misses

• hoist first load to each cache block
Improve spatial locality

• group & transpose
• makes data from different vectors that are accessed together

contiguous in memory
• loop interchange

• so inner loop follows memory layout
Improve temporal locality

• loop fusion
• put computations on the same portion of an array from separate

loops into one loop
• tiling (also called blocking)

• do all computation on a small block of an array that will fit in the
cache

Spring 2010 10CSE 471 - Advanced Caching
Techniques

Tiling Example
/* before */
for (i=0; i<n; i=i+1)

for (j=0; j<n; j=j+1){
r = 0;
for (k=0; k<n; k=k+1) {

r = r + y[i,k] * z[k,j]; }
x[i,j] = r;
};

/* after */
for (jj=0; jj<n; jj=jj+T)
for (kk=0; kk<n; kk=kk+T)

for (i=0; i<n; i=i+1)
for (j=jj; j<min(jj+T-1,n); j=j+1) {

r = 0;
for (k=kk; k<min(kk+T-1,n); k=k+1)

{r = r + y[i,k] * z[k,j]; }
x[i,j] = x[i,j] + r;
};

Spring 2010 11CSE 471 - Advanced Caching
Techniques

Memory Banks

Interleaved memory:
• multiple memory banks

• word locations are assigned across banks
• interleaving factor: number of banks
• send a single address to all banks at once

Spring 2010 12CSE 471 - Advanced Caching
Techniques

Memory Banks

Interleaved memory:
+ get more data for one transfer

• data is probably used (why?)
- larger DRAM chip capacity means fewer banks
- power issue

Effect on memory system performance?

Spring 2010 13CSE 471 - Advanced Caching
Techniques

Memory Banks

Independent memory banks
• different banks can be accessed at once, with different addresses
• allows parallel access, possibly parallel data transfer
• multiple memory controllers & separate address lines, one for each

access
• different controllers cannot access the same bank

• less area than dual porting

Effect on memory system performance?

Spring 2010 14CSE 471 - Advanced Caching
Techniques

Advanced Caching Techniques

Approaches to improving memory system performance

• eliminate memory accesses

• decrease the number of misses

• decrease the miss penalty

• hide memory latencies

• increase cache throughput

• increase memory bandwidth

Spring 2010 15CSE 471 - Advanced Caching
Techniques

Wrap-up
Victim cache (reduce miss penalty)
TLB (reduce page fault time (penalty))
Hardware or compiler-based prefetching (reduce misses)
Cache-conscious compiler optimizations (reduce misses or hide miss penalty)
Coupling a write-through memory update policy with a write buffer (eliminate

store ops/hide store latencies)
Handling the read miss before replacing a block with a write-back memory

update policy (reduce miss penalty)
Sub-block placement (reduce miss penalty)
Non-blocking caches (hide miss penalty)
Merging requests to the same cache block in a non-blocking cache (hide miss

penalty)
Requested word first or early restart (reduce miss penalty)
Cache hierarchies (reduce misses/reduce miss penalty)
Virtual caches (reduce miss penalty)
Pipelined cache accesses (increase cache throughput)
Banked or interleaved memories (increase bandwidth)
Independent memory banks (hide latency)
Wider bus (increase bandwidth)
Trace cache (reduce accesses, reduce misses)

Spring 2010 16CSE 471 - Advanced Caching
Techniques

