
Cache Coherency

The issue:
• must guarantee that all processors see correct data despite

multiple readers & writers
• in a nutshell, how to make writes by one processor show up in

other processor caches

Cache coherent processors
• all reading processors must get the most current value
• most current value for an address is the last write

Cache coherency problem
• update from a writing processor is not known to other processors

Spring 2010 1CSE 471 - Cache Coherence

A Low-end MP

Spring 2010 2CSE 471 - Cache Coherence

Cache Coherency

Cache coherency protocols
• (usually) hardware mechanism for maintaining cache coherency
• coherency state associated with a cache block of data
• bus/interconnect operations on shared data change the state

• for the processor that initiates an operation
• for other processors that have the data of that operation

resident in their caches

Spring 2010 3CSE 471 - Cache Coherence

Cache Coherency Protocols

Write-invalidate
(most multiprocessors)

• processor obtains exclusive access for writes (becomes the
“owner”) by invalidating data in other processors’ caches

• coherency miss (invalidation miss)
• cache-to-cache transfers
• good for:

• multiple writes to same word or block by one processor
• exploits migratory sharing from processor to processor or

processor locality

Spring 2010 4CSE 471 - Cache Coherence

A Low-end MP

Spring 2010 5CSE 471 - Cache Coherence

Cache Coherency Protocols

Write-update
(SPARCCenter 2000)
• broadcast each write to actively shared data
• each processor with a copy snoops/takes the data
• good for inter-processor contention

Competitive
(DEC Alphas)
• switches between them

We will focus on write-invalidate.

Spring 2010 6CSE 471 - Cache Coherence

A Low-end MP

Cache Coherency Protocol Implementations

Snooping
• used with low-end MPs

• few processors
• centralized memory
• bus-based (broadcast)

• distributed implementation: responsibility for maintaining coherence
lies with each processor cache

Directory-based
• used with higher-end MPs

• more processors
• distributed memory
• multi-path interconnect (point-to-point)

• distributed implementation: responsibility for maintaining coherence
lies with the directory for each address

Spring 2010 8CSE 471 - Cache Coherence

Snooping Implementation

A distributed coherency protocol
• coherency state associated with each cache block
• each snoop maintains coherency for its own cache

• compare address on the bus with address in cache
• response depends on coherency state

Spring 2010 9CSE 471 - Cache Coherence

Snooping Implementation

How the bus is used
• broadcast medium
• entire coherency operation is atomic wrt other processors

• keep-the-bus protocol:
• master holds the bus until the entire operation has

completed
• do not initiate another operation while one is in progress

• split-transaction protocol :
• request & response are different phases
• state values that indicate that an operation is in progress
• do not initiate another operation for a cache block that has

one in progress

Spring 2010 10CSE 471 - Cache Coherence

Snooping Implementation

Snoop implementation:
• snoop on the highest level cache

• another reason L2 is physically-accessed
• property of inclusion:

• all blocks in L1 are in L2
• therefore only have to snoop on L2
• may need to update L1 state if change L2 state

• separate tags & state for snoop lookups
• processor & snoop communicate for a state or tag change

Spring 2010 11CSE 471 - Cache Coherence

An Example Snooping Protocol

Invalidation-based coherency protocol
Each cache block is in one of three states

• shared:
• clean in all caches & up-to-date in memory
• block can be read by any processor

• exclusive:
• dirty in exactly one cache
• only that processor can read/write to it

• invalid:
• block contains no valid data

Spring 2010 12CSE 471 - Cache Coherence

State Transitions for a Given Cache Block

State transitions caused by:

• events caused by the requesting processor, e.g.,

• read miss (go from invalid to shared)

• write miss (go from invalid to exclusive)

• write on shared block (go from shared to exclusive)

• events caused by snoops of other caches, e.g.,

• read miss by P1 makes P2’s owned block change from
exclusive to shared

• write miss by P1 makes P2’s owned block change from
exclusive to invalid

Spring 2010 13CSE 471 - Cache Coherence

State Machine (CPU side)

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU read miss

CPU write miss

CPU read hit

Place read op
on bus

Place write op
on bus

CPU read miss
Place read op on bus
Write-back block

CPU write
Place write op on bus

CPU read miss
Place read op
on bus

CPU write miss
Place write op on bus
Write-back cache block

CPU read hit

CPU write hit
Spring 2010 14CSE 471 - Cache Coherence

State Machine (Bus side: the snoop)

Invalid Shared
(read/only)

Exclusive
(read/write)

Write miss for this
block
Write-back the block Read miss for this block

Write-back the block

Write miss
for this block

Spring 2010 15CSE 471 - Cache Coherence

Directory Implementation

Distributed memory machine
• each processor (or cluster of processors) has its own portion of

physical memory
• processor-memory pairs are connected via a multi-path

interconnection network
• point-to-point communication
• snooping with broadcasting is wasteful of the parallel

communication capability
• a processor has fast access to its local memory & slower access to

“remote” memory located at other processors
• NUMA (non-uniform memory access) machines

Spring 2010 16CSE 471 - Cache Coherence

A High-end MP

Proc

Interconnection network

$ Proc $ Proc $

Proc $Proc $Proc $

Mem

Dir

Mem

Dir

Mem

Dir

Mem

Dir

Mem

Dir

Mem

Dir

Spring 2010 17CSE 471 - Cache Coherence

Coherence on High-end Machines

How cache coherency is handled
• no caches (early Cray MTA)
• disallow caching of shared data (Cray 3TD)
• software coherence (research machines)
• * hardware directories that record cache block state (most others)

Spring 2010 18CSE 471 - Cache Coherence

Directory Implementation

Coherency state is associated with units of memory that are the size of
cache blocks: directory state
• directory tracks the state of cache blocks

• shared:
• at least 1 processor has the data cached & memory is up-

to-date
• block can be read by any processor

• exclusive:
• only 1 processor (the owner) has the data cached &

memory is stale
• only that processor can write to it

• invalid:
• no processor has the data cached & memory is up-to-date

• directory tracks the sharing of memory blocks for its memory
• bit vector in which 1 means the processor has cached the data
• write bit to indicate if exclusive

Spring 2010 19CSE 471 - Cache Coherence

Directory Implementation

Directories assign different uses to different processors for the purpose of
maintaining coherency
• home node: where the memory location of an address resides (and

cached data may be there too)
• local node: where the memory request initiated
• remote node: an alternate location for the data, if this processor

has requested & cached it

In satisfying a memory request:
• messages sent between the different nodes in point-to-point

communication
• home node identified by the address
• messages get explicit replies

Some simplifying assumptions for using the protocol
• processor blocks until the access is complete
• messages processed in the order received

Spring 2010 20CSE 471 - Cache Coherence

Read Miss for an Uncached Block

P2

Mem Mem

Mem

Interconnection network

$ P3 $

P4 $P1 $

1: read miss

2: data value reply
Mem

Dir

Mem

Dir

Spring 2010 21CSE 471 - Cache Coherence

Read Miss for an Exclusive, Remote Block

P2

Mem

Interconnection network

$ P3 $

P4 $P1 $

1: read miss

4: data value reply
2: fetchMem

Dir

Mem

Dir

Mem

Dir

3: data write-back

Spring 2010 22CSE 471 - Cache Coherence

Write Miss for an Exclusive, Remote Block

P2

Mem Mem

Interconnection network

$ P3 $

P4 $P1 $

1: write miss

4: data value reply
3: data write-back

2: fetch & invalidateMem

Dir

Mem

Dir

Mem

Dir

Spring 2010 23CSE 471 - Cache Coherence

Directory Protocol Messages
Message type Source Destination Message Content

Read miss Local cache Home directory P, A
– Processor P reads data at address A;

make P a read sharer and arrange to send data back
Write miss Local cache Home directory P, A

– Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A
– Invalidate a shared copy at address A.

Fetch Home directory Remote cache A
– Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A
– Fetch the block at address A and send it to its home directory; invalidate the block in

the cache
Data value reply Home directory Local cache Data

– Return a data value from the home memory (read or write miss response)
Data write-back Remote cache Home directory A, Data

– Write-back a data value for address A (invalidate response)
Spring 2010 24CSE 471 - Cache Coherence

Directory FSM for a Memory Block

Tracks all copies of a memory block
Makes two state changes:

• update coherency state (same as for snooping protocol)
• alter the number of sharers in the sharing set

Spring 2010 25CSE 471 - Cache Coherence

Directory FSM for a Memory Block

(Data write-back)
Sharers = {}

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss
Send data reply
Sharers = {P}, W = 0

Write miss
Send invalidate to all
sharers
Send data reply
Sharers = {P}, W = 1

Write miss
Send data reply
Sharers = {P}, W = 1

Read miss
Send data fetch to owner
(Data write-back)
Send data reply
Sharers += {P}, W = 0

Read miss
Send data reply
Sharers += {P}, W = 0

Write miss
Send fetch/invalidate to
owner
(Data write-back)
Send data reply
Sharers = {P}, W = 1Spring 2010 26CSE 471 - Cache Coherence

CPU FSM for a Cache Block

Same coherency states as for the directory FSM
Transactions very similar to snooping implementations

• read & write misses sent to home directory
• invalidate & data fetch requests to the node with the data replace

broadcasted read/write misses

Spring 2010 27CSE 471 - Cache Coherence

CPU FSM for a Cache Block

Fetch/Invalidate

Invalidate
Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU read

CPU read hit

CPU write CPU write

CPU write hit

CPU read miss

CPU write miss

CPU read hit

Fetch

Read miss

Spring 2010 28CSE 471 - Cache Coherence

False Sharing

Processors read & write to different words in a shared cache block
• cache coherency is maintained on a cache block basis

• processes share cache blocks, not data
• block ownership bounces between processor caches

Spring 2010 29CSE 471 - Cache Coherence

A Low-end MP

Spring 2010 30CSE 471 - Cache Coherence

False Sharing

Impact aggravated by:
• block size: why?
• cache size: why?
• large miss penalties: why?

Reduced by:
• coherency protocols (coherency state per subblock)

• let cache blocks become incoherent as long as there is only
false sharing

• make them coherent if any processor true shares
• compiler optimizations (group & transpose, cache block padding)
• cache-conscious programming wrt initial data structure layout

Spring 2010 31CSE 471 - Cache Coherence

