
Spring 2010 CSE 471 - Multiple Instruction Width 1

In-order vs. Out-of-order Execution

In-order instruction execution
• instructions are fetched, executed & committed in compiler-

generated order
• if one instruction stalls, all instructions behind it stall

• instructions are statically scheduled by the hardware
• scheduled in compiler-generated order
• how many of the next n instructions can be issued, where n is

the superscalar issue width
• superscalars can have structural & data hazards within

the n instructions
• advantage of in-order instruction scheduling: simpler

implementation
faster clock cycle
fewer transistors
faster design/development/debug time

Spring 2010 CSE 471 - Multiple Instruction Width 2

In-order vs. Out-of-order Execution

Out-of-order instruction execution
• instructions are fetched in compiler-generated order
• instruction completion may be in-order (today) or out-of-order (older

computers)
• in between they may be executed in some other order
• instructions are dynamically scheduled by the hardware

• hardware decides in what order instructions can be executed
• instructions behind a stalled instruction can pass it if not

dependent upon it
• advantages: higher performance

• better at hiding latencies, less processor stalling
• higher utilization of functional units

Spring 2010 CSE 471 - Multiple Instruction Width 3

In-order instruction issue: Alpha 21164

2 styles of static instruction scheduling
• dispatch buffer & instruction slotting (Alpha 21164)
• shift register model (UltraSPARC-1)

Spring 2010 CSE 471 - Multiple Instruction Width 4

In-order instruction issue: Alpha 21164

Instruction slotting
• can issue up to 4 instructions

• completely empty the instruction buffer before filling it again
• compiler can pad with nops so a conflicting instruction is

issued with the following instructions, not alone

Spring 2010 CSE 471 - Multiple Instruction Width 5

21164 Instruction Unit Pipeline

Fetch & issue
S0: instruction fetch

branch prediction bits read
S1: opcode decode

target address calculation
if predict taken, redirect the fetch

S2: instruction slotting: decide which of the next 4 instructions can
be issued
• intra-cycle structural hazard check
• intra-cycle data hazard check

S3: instruction dispatch
• inter-cycle load-use hazard check
• register read

Spring 2010 CSE 471 - Multiple Instruction Width 6

Spring 2010 CSE 471 - Multiple Instruction Width 7

In-order instruction issue: UltraSparc 1

Shift register model
• can issue up to 4 instructions per cycle
• shift in new instructions after every group of instructions is issued

Spring 2010 CSE 471 - Multiple Instruction Width 8

Code Scheduling on Superscalars

Original code
Loop: lw R1, 0(R5)

addu R1, R1, R6
sw R1, 0(R5)
addi R5, R5, -4
bne R5, R0, Loop

Spring 2010 CSE 471 - Multiple Instruction Width 9

Code Scheduling on Superscalars

ALU/branch instructions memory instructions clock cycle

Loop: 1

2

3

4

With load-latency-hiding code
Loop: lw R1, 0(s1)

addi R5, R5, -4
addu R1, R1, R6
sw R1, 4(R5)
bne R5, $0, Loop

Original code
Loop: lw R1, 0(R5)

addu R1, R1, R6
sw R1, 0(R5)
addi R5, R5, -4
bne R5, R0, Loop

Spring 2010 CSE 471 - Multiple Instruction Width 10

Code Scheduling on Superscalars: Loop Unrolling

What is the cycles per iteration?
What is the IPC?

ALU/branch instruction Data transfer instruction clock cycle
Loop: addi R5, R5, -16 lw R1, 0(R5) 1

lw R2, 12(R5) 2
addu R1, R1, R6 lw R3, 8(R5) 3
addu R2, R2, R6 lw R4, 4(R5) 4
addu R3, R3, R6 sw R1, 16(R5) 5
addu R4, R4, R6 sw R2, 12(R5) 6

sw R3, 8(R5) 7
bne R5, R0, Loop sw R4, 4(R5) 8

Spring 2010 CSE 471 - Multiple Instruction Width 11

Code Scheduling on Superscalars: Loop Unrolling

Advantages:
+

+

-

-

Spring 2010 CSE 471 - Multiple Instruction Width 12

Superscalars

Hardware impact:
• more & pipelined functional units
• multi-ported registers for multiple register access
• more buses from the register file to the additional functional units
• multiple decoders
• more hazard detection logic
• more bypass logic
• wider instruction fetch
• multi-banked L1 data cache

or else the processor has structural hazards (due to an unbalanced
design) and stalling

There are restrictions on instruction types that can be issued together to
reduce the amount of hardware.

Static (compiler) scheduling helps.

