

Why Multiprocessors			
 Utilizes coarser granularities than ILP Lots of workload opportunity Scientific computing/supercomputing Examples: weather simulation, aerodynamics, protein folding Each processor computes for a part of the grid Server workloads Example: airline reservation database Many concurrent updates, searches, lookups, queries Processors handle different requests Media workloads Processors compress/decompress different parts of image/frames Desktop workloads Gaming workloads What would you do with 2 billion transistors?			
Spring 2010 CSE 471 - Multiprocessors 2			

Share	d Memory vs. Message Passing	1
Why there was a de Iittle experim not separate can emulate MP on S messag c SM on M Id/st bec	ebate nental data e implementation from programming model e one paradigm with the other SM machine e buffers in local (to each processor) memor opy messages by ld/st between buffers MP machine comes a message copy <i>loooooooow</i>	у
Who won?		
Spring 2010	CSE 471 - Multiprocessors	9

Flynn Classification			
SISD: single i • single	nstruction stream, single data stream -context uniprocessors		
SIMD: single • exploi • examp	instruction stream, multiple data streams ts data parallelism ple: Thinking Machines CM		
MISD: multipl • systoli • examp GPU (e instruction streams, single data stream ic arrays ole: Intel iWarp, today's streaming processors (e.g., the ATI (320))	I	
MIMD: multip • multip • multith • paralle • relies async	le instruction streams, multiple data streams rocessors rreaded processors el programming & multiprogramming on control parallelism: execute & synchronize different hronous threads of control		
 examp Spring 2010 	ble: most processor companies have CMP configurations CSE 471 - Multiprocessors	10	

