
Why Multiprocessors?

Moore’s Law predicted a doubling of processor performance every couple
of years

• true until about 2000

Limits on the performance of a single processor: what are they?

Spring 2010 1CSE 471 - Multiprocessors

Why Multiprocessors

Utilizes coarser granularities than ILP
Lots of workload opportunity
• Scientific computing/supercomputing

• Examples: weather simulation, aerodynamics, protein folding
• Each processor computes for a part of the grid 

• Server workloads
• Example: airline reservation database
• Many concurrent updates, searches, lookups, queries
• Processors handle different requests

• Media workloads
• Processors compress/decompress different parts of image/frames

• Desktop workloads…
• Gaming workloads…

What would you do with 2 billion transistors?

Spring 2010 2CSE 471 - Multiprocessors



Issues in Multiprocessors

Which programming model for interprocessor communication
• shared memory

• regular loads & stores
• IBM Power 7 (8), Intel Core 2 Quad (4), Cray T3D, Sun Niagra

3 (16), AMD Quad Phenon (4), Sun Ultra Enterprise (72)
• message passing

• explicit sends & receives
• IBM BlueGene/L (64), Intel Paragon

Which execution model
• control parallel

• identify & synchronize different asynchronous threads
• data parallel

• same operation on different parts of the shared data space

Spring 2010 3CSE 471 - Multiprocessors

Issues in Multiprocessors

How to express error-free parallelism (hardest problem)
• language support

• HPF, ZPL
• runtime library constructs

• coarse-grain, explicitly parallel C programs
• automatic (compiler) detection

• implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS 
compilers

• HW support for maintaining correctness (today’s efforts)

Application development
• embarrassingly parallel programs could be easily parallelized
• development of different algorithms for same problem

Spring 2010 4CSE 471 - Multiprocessors



Issues in Multiprocessors

How to get good parallel performance
• recognize parallelism
• transform programs to increase parallelism without decreasing 

processor locality
• decrease sharing costs

Spring 2010 5CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model

• global shared address space
• not worry about data locality but

get better performance when program for data placement
lower latency when data is local

• but can do data placement if it is crucial, but don’t 
have to

• hardware maintains data coherence
• synchronize to order processor’s accesses to shared data

• like uniprocessor code so parallelizing by programmer or 
compiler is easier

⇒ can focus on program semantics, not interprocessor
communication or data layout

Spring 2010 6CSE 471 - Multiprocessors



Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but

overlap of communication & computation
latency-hiding techniques can be applied to message passing 

machines
+ higher bandwidth for small transfers but

usually the only choice

Spring 2010 7CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Message passing
+ abstraction in the programming model encapsulates the 

communication costs but
more complex programming model
additional language constructs
need to program for nearest neighbor communication

+ no coherency hardware
+ good throughput on large transfers but

what about small transfers?
+ more scalable (memory latency for uniform memory doesn’t scale 

with the number of processors) but
large-scale SM has distributed memory also

• hah! so you’re going to adopt the message-passing 
model?

Spring 2010 8CSE 471 - Multiprocessors



Shared Memory vs. Message Passing

Why there was a debate
• little experimental data
• not separate implementation from programming model
• can emulate one paradigm with the other

• MP on SM machine
message buffers in local (to each processor) memory

copy messages by ld/st between buffers
• SM on MP machine

ld/st becomes a message copy
sloooooooooow

Who won?

Spring 2010 9CSE 471 - Multiprocessors

Flynn Classification

SISD: single instruction stream, single data stream
• single-context uniprocessors

SIMD: single instruction stream, multiple data streams
• exploits data parallelism
• example: Thinking Machines CM

MISD: multiple instruction streams, single data stream
• systolic arrays 
• example: Intel iWarp, today’s streaming processors (e.g., the ATI 

GPU (320))

MIMD: multiple instruction streams, multiple data streams
• multiprocessors
• multithreaded processors
• parallel programming & multiprogramming 
• relies on control parallelism: execute & synchronize different 

asynchronous threads of control
• example: most processor companies have CMP configurations

Spring 2010 10CSE 471 - Multiprocessors



MIMD

Low-end
• bus-based

• simple, but a bottleneck
• simple cache coherency protocol

• physically centralized memory
• uniform memory access (UMA machine)
• most of today’s CMPs (SunFire (16))

Spring 2010 11CSE 471 - Multiprocessors

Low-end MP

Spring 2010 12CSE 471 - Multiprocessors



MIMD

High-end
• higher bandwidth, multiple-path interconnect

• longer memory latencies
• more scalable
• more complex cache coherency protocol (if shared memory)

• physically distributed memory
• non-uniform memory access (NUMA machine)
• could have processor clusters
• SGI Origin, AMD HyperTransport, Cray T3D, IBM SP-2, Intel 

Paragon

Spring 2010 13CSE 471 - Multiprocessors

High-end MP

Spring 2010 14CSE 471 - Multiprocessors



Comparison of Issue Capabilities

Spring 2010 15CSE 471 - Multiprocessors


