Motivation for Multithreaded Architectures

Processors notexecuting code at their hardware potential

Spring 2010

late 70’s: performance lostto memory latency

90’s: performance notin line with the increasingly complex parallel
hardware as well

increase in instruction issue bandwidth
increase in number of functional units
out-of-order execution

techniques for decreasing/hiding branch & memory latencies

Still, processor utilization was decreasing & instruction
throughputnotincreasing in proportion to the issue width

CSE471

Percent of Total Issue Cycles |

Spring 2010

100

M

50

40

30

ivation for M

20

10

[tithr

Applications

CSE471

Archi r

H mem conflict
Olong fp

O shortfp

H long int

M shortint

Hload delays

O control hazards
H branchmispred
B dcache miss
Hicache miss

H dtlbmiss

M itlb miss

M processor busy

5/14/2010

Motivation for Multithreaded Architectures

Major cause is the lack of instruction-level parallelismin a single executing
thread

Therefore the solution:

* hasto be more general than building a smarter cache or a more
accurate branch predictor

* hasto involve more than one thread

Spring 2010 CSE471 3

Multithr Pr r

Multithreaded processors can increase the pool of independent
instructions & consequently address multiple causes of processor

stalling
» holds processor state for more than one thread of execution
* registers
« PC
* eachthread’s state is a hardware context

» execute the instruction stream from multiple threads without
software context switching
+ utilize thread-level parallelism (TLP) to compensate foralackin
single-thread ILP
* Improve hardware utilization

* Maydegrade latency of individual threads, butimproves latency
of all threads together (by increasing instruction throughput)

Spring 2010 CSE471 4

5/14/2010

Multithreading

Traditional multithreaded processors hardware switch to a different context
to avoid processor stalls

Two styles of traditional multithreading
1.coarse-grain multithreading
» switch on a long-latency operation (e.g.,L2 cache miss)
» anotherthread executes while the missis handled
* modestincrease ininstruction throughput
» doesn’thide latency of short-latency operations
* noswitchif nolong-latency operations
* needtofill the pipeline on a switch
» potentially no slowdown to the thread with the miss
« ifstallis long, pipeline is short & switch back fairly promptly
* Denelcor HEP, IBM RS64 I, IBM Northstar/Pulsar

Spring 2010 CSE471 5

Traditional Multithr in

Two styles of traditional multithreading
2.fine-grain multithreading
» canswitchto a differentthread each cycle (usually round robin)
* hideslatencies of all kinds

« largerincrease ininstruction throughputbutslows down the
execution of each thread

e Cray(Tera) MTA

Spring 2010 CSE471 6

5/14/2010

5/14/2010

Comparison of Issue Capabilities

Traditional CMP

Superscalar g ihreading (many-core)

horizontal waste

Issue slots Issue slots Issue slots
I EE(_ HEEEN
0000 EEo0o Oooo
EE(] EE]D EEEE
ECCO0O EOO0O0 EOEQ
0000 00 0000
ENEE NEEEE ENCI]
ol HEEL EEEE

10 EE00 gQogd
EEO0 EROO

/ I Thread1

vertical waste Il Thread2

=—— Time processor cycles)

Spring 2010 CSE471 7

imultan Multithr in MT

Third style of multithreading, differentconcept
3. simultaneous multithreading (SMT)
» issues multiple instructions from multiple threads each cycle
* no hardware contextswitching
* same-cycle multithreading

* huge boostininstruction throughputwith less degradation to
individual threads

Spring 2010 CSE471 8

5/14/2010

Comparison of Issue Capabilities

Traditional CMP

_ Superscalar g ehreading (Many-core)
horizontal waste

:

Issne slots Issue slots Issue slots Issue slots
7 I) HE] !!E!! HEN]
§ = [| |Em NN HEE]
= HECO | |HIE EEEN EEEE
¢ EMO0O0O Wm0 HmLEL] HmE]
g HEEn 1] OO0 B0
¢ HHENR EEEN][EEEE
l | HENE] !!;!! HEN]
0 EEDOC UOU00 mEEed
I EEL]] L]
/ B Thread1 B Threadd
vertical waste M Thread2

Spring 2010 CSE471 9

Cray(Tera) MTA

Goals
» the appearance of uniform memory access
» lightweightsynchronization
* heterogeneous parallelism

Spring 2010 CSE471 10

Cray (Tera) MTA

Fine-grain multithreaded processor
» canswitchto a differentthread each cycle
» switchesto ready threads only
» upto 128 hardware contexts

* lots of latency to hide, mostly from the multi-hop
interconnection network

+ average instruction latency forcomputation: 22 cycles
(i.e., 22instruction streams needed to keep functional units
busy)

» average instruction latency including memory: 120 to 200-
cycles

(i.e., 120to 200 instruction streams needed to hide all latency,
on average)

» processor state for all 128 contexts
* GPRs (total of 4K registers!)
 statusregisters (includesthe PC)
» branchtargetregisters/stream

Spring 2010 CSE471 11

Cray(Tera) MTA

Interesting features
* Noprocessor-side data caches

 increasesthe latency for data accesses but reducesthe
variation between memory ops

» toavoid having to keep caches coherent
* memory-side buffersinstead
* L1&L2instructioncaches

« instruction accesses are more predictable & have no coherency
problem

» prefetch fall-through & targetcode

Spring 2010 CSE471 12

5/14/2010

Cray (Tera) MTA

Interesting features

* Trade-off between avoiding memory bank conflicts &
exploiting spatial locality for data

» conflicts:
* memory distributed among processing elements (PESs)
* memory addresses are randomized to avoid conflicts
» wantto fully utilize allmemory bandwidth
* locality:

* run-time system can confine consecutive virtual addressesto a
single (close-by) memory unit

Spring 2010 CSE471 13

r Tera) MTA

Interesting features
* no paging
* wantpages pinned down in memory for consistentlatency
* pagesizeis 256MB

e VLIW instructions
* memory/arithmetic/branch
* needagood code scheduler
* load/store architecture

Spring 2010 CSE471 14

5/14/2010

Cray (Tera) MTA

Interesting features
* tagged memory, i.e., fulllempty bits
« indirectly setfull/empty bitsto preventdata races

+ preventsaconsumer/producerfrom loading/overwriting a
value before a producer/consumer has written/read it

+ example forthe consumer:

+ setto empty when producer instruction starts
executing

» consumerinstructions blockif try to read the producer
value

+ setto fullwhen producerwrites value
» consumerscannow read avalid value
« explicitly setfull/lempty bits for cheap thread synchronization
» primarily used accessing shared data
* lock:read memory location & setto empty
+ otherreaders are blocked

* unlock: write & set to full
Spring 2010 CSE471 15

SMT: The Executive Summary

Simultaneous multithreaded (SMT) processors combine designs from:
» out-of-order superscalar processors
« traditional multithreaded processors

The combination enables a processor

» thatissues & executes instructions from multiple threads
simultaneously, same-cycle multithreading

=>converting TLP to ILP
¢ inwhichthreads share almostall hardware resources

Spring 2010 CSE471 16

5/14/2010

Performance Implications

Multiprogramming workload

* 2.5Xon SPEC95,4X on SPEC2000
Parallel programs

* ~1.7Xon SPLASH?2
Commercial databases

» 2-3XonTPC B; 1.5Xon TPC D
Web servers & OS

* 4Xon Apache and Unix

Spring 2010 CSE471

17

D his Pr r nd Familiar?

Technology transfer =>

« 2-contextIntel Xeon w/Hyperthreading (Sun Fire servers)

* 4-context|BM Power7 (8 cores)

» 2-contextSun UltraSPARC on a 4-processor CMP

* 4-contextCompaq 21464

Spring 2010 CSE471

18

5/14/2010

An SMT Architecture

Three primary goals for this architecture:

1. Achieve significantthroughput gains with multiple threads

2.Minimize the performance impacton a single thread executing
alone

3. Minimize the microarchitecturalimpacton a conventional out-of-
order superscalardesign

Spring 2010 CSE471

19

Implementing SMT

Fetch £p FTTT EP IFP
unit e 1 pe _linstruction queus| | registers T

units
| T

T

Data
i cache
Inztruction cache TTTTT J_'
integer ; j
Ly . einteger intfldg
- mstrLlJolnclmlqlueue registers hunits
F -
Register
Decode [ENAMING —
logic
Spring 2010

CSE471 20

5/14/2010

10

Implementing SMT

No special hardware for scheduling instructions from multiple
threads

» use the out-of-orderrenaming & instruction scheduling mechanisms

asa superscalar

* physical register pool

* hardware renaming hardware eliminates false dependences both
within athread (just like a superscalar) & between threads

How it works:
* map thread-specific architectural registers onto a pool of thread-
independentphysical registers
» operands are thereafter called by their physical names
» aninstructionis issued when its operands become available & a
functional unitisfree

« instruction scheduler notconsider thread IDs when dispatching
instructions to functional units
(unlessthreads have differentpriorities)

Spring 2010 CSE471

21

From Superscalar to SMT

Extra pipeline stages for accessingthread-sharedregister files
» 8threads* 32 registers + renaming registers

SMT instruction fetcher (ICOUNT chooser)

» fetchfrom 2 threads each cycle

« countthe number of instructions for each thread in the pre-
execution stages

» pickthe 2 threads with the lowestnumber
» inessence fetching from the two highestthroughputthreads

Spring 2010 CSE471

22

5/14/2010

11

From Superscalar to SMT

Per-thread hardware
» small stuff
+ all partof currentout-of-order processors
* noneendangeredthe cycletime

» otherper-thread processor state, e.g.,

* program counters

* return stacks

« threadidentifiers, e.g.,with BTB entries, TLB entries
» per-thread bookkeeping for,e.g.,

« instruction queue flush on branch mispredictions

* instruction commit

 trapping

Thisis why thereis only a 15% increase to Alpha 21464 chip area.

Spring 2010 CSE471 23

Implementing SMT

Thread-shared hardware:
» fetchbuffers
» branch targetbuffer
* instruction queues
+ functional units
« all caches (physical tags)
* TLBs
+ store buffers &« MSHRs

Thread-shared hardware is another reason why there is little single-thread
performance degradation (~1.5%).

Whathardware mightyou not want to share?

Spring 2010 CSE471 24

5/14/2010

12

Implementing SMT
Does sharing hardware cause more conflicts?
— 2X more data cache misses
+ otherthreads hide the misslatency

+ datasharing

Bottom line is huge overall performance boost

Spring 2010 CSE471

25

Manadind Thr -shared Hardwar

Concept & potential of Simultaneous Multithreading
Designing the microarchitecture
+ straightforward extension of out-of-order superscalars
Thread chooser for instruction fetching ICOUNT) (pipeline)
* 40% faster than round-robin
Hardware queuing locks for cheap synchronization
» orders of magnitude faster
« canparallelize previouslyunparallelizable codes

Spring 2010 CSE471

26

5/14/2010

13

Managing Thread-shared Hardware

Mini-threads (registers)
» large SMT performance w.small SMTs

« compiling for fewer registers/thread; surprisingly little additional spill
code (avg. 3%)

SMT instruction speculation (pipeline)
+ don’texecute as fardown a wrong path
+ speculative instructions don’tgetas fardown the pipeline
« speculation keeps agood thread mixin the IQ

* mostimportantfactor for performance

Spring 2010 CSE471 27

Manadind Thr -shared Hardwar

Tuning compiler optimizations for SMT (data caches, TLB)
+ datadecomposition: use cycliciteration scheduling
+ tiling: use cyclic tiling; no tile size sweet spot

Software-directed register deallocation (registers)
» communicate last-use information to HW for early register deallocation
* now need fewerrenaming registers

+ large register-file performance with a small register file

Spring 2010 CSE471 28

5/14/2010

14

Blocked

Cyclic

Spring 2010

Loop distribution

Distributes iterations & contiguous data across
threads, separate data/thread

Often works, except when: large number of threads,
large number of arrays, small TLB

Clusters threads’ data, intra-page thread sharing
Speedups from break-even to 4X

CSE471 29

Blocked

H OGS
HCHEC (R

Tiling

Tiled to exploit data reuse, separate tiles/thread

Often works, except when: large number of threads,
large number of arrays, small data cache

Issue of tiling sweet spot

Threads share a tile & iterations are cyclically
distributed across threads

Better performance for cache hierarchies of different
sizes

Insensitive to tile size

5/14/2010

15

5/14/2010

Tiling

Tiled to exploit data reuse, separate tiles/thread

Often works, except when: large number of threads,
large number of arrays, small data cache

Issue of tiling sweet spot

Blocked

Threads share a tile & iterations are cyclically
distributed across threads

Better performance for cache hierarchies of different
sizes

Insensitive to tile size
Tiles can be large to reduce loop control overhead

Spring 2010 CSE471 31

hers Pick he Ball

Faultdetection & recovery from transienterrors (run 2 copies of a thread)

Thread-level speculation (speculatively parallelizing loops, conditional
code, function calling)

Instruction prefetching

Data prefetching

Single-thread execution

Profiling executing threads
Instruction issue hardware design
Thread scheduling & thread priority
SMT-CMP hybrids

Power considerations

I've stopped keeping track
Spring 2010 CSE471 32

16

Multicore vs. Multithreading

If you wanted to execute multiple threads, would you build a:
» Multicore with multiple, separate pipelines?

» SMT with a single larger pipeline?

» Bothtogether?

Sun Niagra: 8 in-order, short-pipelined processors, each with 4
threads (fine-grained multithreading)

Intel Nehalem:upto 8 cores, 16 SMT threads

4-contextIBM Power7 (8 cores)
Spring 2010 CSE471 33

SMT Collaborators

uw DEC/Compaq
Hank Levy
Steve Gribble Joel Emer (now Intel)
Rebecca Stamm
Dean Tullsen (UC San Diego) Luiz Barroso (now Google)

Jack Lo (VMWare)

Sujay Parekh (IBM Yorktown)
Brian Dewey (Microsoft)
Manu Thambi (Microsoft)
Josh Redstone (Google)
Mike Swift(U. Wisconsin)
Luke McDowell (Naval Academy)
Steve Swanson (UC San Diego)
Aaron Eakin (HP)

Dimitriy Portnov (Google)

Kourosh Gharachorloo (now Google)

Formore info on SMT:
http://www.cs.washington.edu/research/smt

Spring 2010 CSE471 34

5/14/2010

17

