Dynamic Scheduling

Why go out of style?
» expensive hardware for the time (actually, still is, relatively)
 register files grew so less register pressure
« early RISCs had lower CPIs

Spring 2010 CSE 471 - R10000 Register 1
Renaming

Dynamic Scheduling

Why come back?
< higher chip densities
» greater need to hide other kinds of latencies as:
« discrepancy between CPU & memory speeds increases
« branch misprediction penalty increases from superpipelining
» dynamic scheduling was generalized to cover loads & branches

+ can be implemented with a more general register renaming
mechanism

* need to preserve precise interrupts
e commit instructions in-order
* more need to expolit ILP
e processors now issue multiple instructions at the same time

2 styles: large physical register file & reorder buffer
(R10000-style) (PentiumPro-style)

Spring 2010 CSE 471 - R10000 Register 2
Renaming

Precise Interrupts

preserve the model that instructions execute in program-
generated order, one at a time

» If a recoverable interrupt occurs, the processor can recover from it

What happens on a precise interrupt:

» disable writes for faulting & subsequent instructions

» force trap instruction into pipeline

e trap routine
» save the program state of the executing program
« correct the cause of the interrupt
* restore program state

Spring 2010 CSE 471 - R10000 Register
Renaming

Register Renaming with A Physical Reqgister File

Register renaming provides a mapping between 2 register sets
» architectural registers defined by the ISA
e physical registers implemented in the CPU
* hold results of the instructions committed so far

« hold results of subsequent instructions that have executed but
have not yet committed

« more of them than architectural registers

* ~issue width * # pipeline stages between register
renaming & commit

Spring 2010 CSE 471 - R10000 Register
Renaming

Register Renaming with A Physical Reqister File

How does it work?:
« an architectural register is mapped to a physical register during a
register renaming stage in the pipeline
« destination registers create mappings
* source registers in subsequent instructions use mappings

« After renaming, operands are called by their physical register
number

 values accessed using physical register numbers

« hazards determined by comparing physical register numbers,
not architectural register numbers

« results are written using physical register numbers

Spring 2010 CSE 471 - R10000 Register
Renaming

A Register Renaming Example

Code Segment Register Mapping Comments
1d r7,0(r6) r7 -> pl plis allocated
add r8, r9, r7 r8 -> p2 use p1, notr7

p3 is allocated
sub r7, r2, r3 r7 -> p3 plis deallocated
when sub commits

Spring 2010 CSE 471 - R10000 Register
Renaming

Register Renaming with A Physical Reqister File

Effects:
« eliminates WAW and WAR hazards (false name dependences)
* increases ILP

Spring 2010 CSE 471 - R10000 Register
Renaming

An Implementation (R10000)

Modular design with regular hardware data structures

Structures for register renaming
* 64 physical registers (each, for integer & FP)

* map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

« current means latest defined destination register

« accessed with the architectural register number of a source
operand

» produces a physical register number for that operand

« adestination register is assigned a new physical register number
from a free register list (separate, for integer & FP)

Spring 2010 CSE 471 - R10000 Register
Renaming

An Implementation (R10000)

Instruction “queues” (integer, FP & data transfer)
» contains decoded & mapped instructions with the current
physical register mappings
« instructions entered into free locations in the 1Q
« sit there until they are dispatched to functional units

< somewhat analogous to Tomasulo reservation stations
but no value fields or valid bits & more centralized

« used to determine when operands are available

e compare physical register numbers of each source
operand for instructions in the 1Q to physical register
numbers of destination values just computed

» determines when an appropriate functional unit is available
« dispatches instructions to functional units

Spring 2010 CSE 471 - R10000 Register 9
Renaming

An Implementation (R10000)

active list for all uncommitted instructions
« the mechanism for maintaining precise interrupts
« instructions entered in program-generated order
« allows instructions to complete in program-generated order
* instructions are removed from the active list:
« when they are committed - an instruction commits if:
« the instruction has completed execution
« all instructions ahead of it have also completed
* branch is mispredicted
e an exception occurs
e contains the previous architectural-to-physical destination register
mapping
« used to recreate the map table for instruction restart after an
exception

 instructions in the other hardware structures & the functional units
are identified by their active list location

Spring 2010 CSE 471 - R10000 Register 10
Renaming

An Implementation (R10000)

busy-register table (integer & FP):
 indicates whether a physical register contains a value
« somewhat analogous to Tomasulo’s register status
» used to determine operand availability
bit is set when a register is mapped & leaves the free list (not
available yet)
» cleared when a FU writes the register (now there’s a value)

Spring 2010 CSE 471 - R10000 Register 11
Renaming
ITLB |BHT / Instruction Cache 4 instr | Predecode
8entry | BTB | 32K, two-way associative | Unit J-‘_ "
. — — T — — E
"'—-——-1—1‘“ : Resume | g : SFI
DSt Cache
< ‘_'{ ache | e
1 j—
PC [Decode, M Maf g
Dispatch Table .
I 4 instr ﬂ‘ Data.
‘ l i SRAM
Integer e Pre ct
Qu O — 512K
16onies |—— | Snes Eonres fiog o .
Integer Registers ; : FP Registers 4 o -
64 = 64 bits 64 = 64 bits 5
3
: k=]
T T lH N B
i Ll £ | 2
Address || ALU1 ALU2 FF’ e = 2
Adder | L I~ == Mult J Adder £ @
] Bl = -
virtual 2 2
addr @D S
Ll S T SSSEELR A e AN e o
o
Main TLB phys addr Data Cache | E-
64 entries 32K, two-way associative | |

Spring 2010 CSE 471 - R10000 Register
Renaming

=
N

R10000 Die Photo

R10K die size 16.6mm x 17.9mm

Umnit

Intege
" Register T Batapa
‘Rename

Spring 2010 CSE 471 - R10000 Register 13
Renaming
The R10000 in Action 1
— 1d 23, #(reg) arch register A3 defined
potential multi-cycle
add 24, A3, reg arch register A3 used
sub 23, reg, reg arch register A3 redefined
name dependence
or A5, A3, reg arch register A3 used
map table
Instruction Queue A%tive List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
Spring 2010 CSE 471 - R10000 Register 14

Renaming

The R10000 in Action 2

— 1d 23, #(reg) arch register
potential multi-cycle
add 24, A3, reg
sub A3, reg, reg
or 25, A3, reg
map table
0
!
4
eliH
/31
Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
~«Px |A3 |notdone
Spring 2010 CSE 471 - R10000 Register 15
Renaming
The R10000 in Action 3
1d A3, #lreq) arch register
potential multi-cycle
— add 44, A3, reg
sub A3, reg, reg
or 45, A3, reg
map table
0
!
4
(lIH
/31
Instruction Queue / Active List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
«Px |A3 |notdone
Spring 2010 CSE 471 - R10000 Register 16

Renaming

The R10000 in Action 4

1d 23, #(reg) arch register
potential multi-cycle
add 24, A3, reg arch register
—l sub A3, reg, reg
ar A5, A3, reg
map table
3 .
2z
5
31
A - .
Instruction Queue Active List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
«Px |A3 |notdone
Tt £ 2 «Py |A4 |notdone
add P21 1
Spring 2010 CSE 471 - R10000 Register 17
Renaming
The R10000 in Action 5
1d 23, #(reg) arch register
potential multi-cycle
add 24, A3, reg arch register
sub 23, reg, reg arch register A3 redefined
name dependence
—l or A5, A3, reg
map table
Instruction Queue / Active List
Ins | S1 | Avail | Dest| AL tag Dest | Arch | Done bit
} 4 —R22 2 APx [A3 [notdone
Tttt & +«Py |A4 |notdone
A3 | done
add 1 P21 1
Spring 2010 CSE 471 - R10000 Register 18

Renaming

The R10000 in Action 5 : Interrupts 1

1d 23, #(reqg) arch register
potential multi-cycle
add 24, A3, reg arch register

sub 43, reg, reg arch register A3 redefined
name dependence

— or A5, A3, reg

map table

Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
ES = R o 2 «Px |A3 |notdone
Tt & «Py |A4 |notdone
A3 |done
add 1 P21 1
Spring 2010 CSE 471 - R10000 Register 19
Renaming
The R10000 in Action: Interrupts 2
1d 23, #(reg) arch register
potential multi-cycle
add 24, A3, reg arch register
— sub 23, reg, reg arch register A3 redefined
name dependence
or A5, A3, reg arch register A3 used
map table
0
e
4 (21
3 |Pz
/31
Instruction Queue A%tive List
Ins | S1 ‘ Avail ‘ Dest‘ AL tag Dest | Arch | Done bit
: «Px |A3 |notdone
'l'd—"wﬁ'-’—ﬂ—"'"—’—e— «Py |A4 |notdone
ada|[P2o[1 [Pz1 | 1
Spring 2010 CSE 471 - R10000 Register 20

Renaming

The R10000 in Action: Interrupts 3

1d A3, #(req) arch register
potential multi-cycle
— add 24, a3, reg arch register

sub 23, reg, reg arch register A3 redefined
name dependence

or AL, A3, reg arch register A3 used
map table
0
:
4
5

Instruction Queue A%ﬁve List

Ins | 51 | Avail [Dest] AL tag Dest [Arch | Done bit
) . #Px |A3 |notdone

I 4| | |

Y)
TR 5 T

Spring 2010 CSE 471 - R10000 Register 21
Renaming

The R10000 in Action: Interrupts 4

— 1d 23, #(reg) arch register
potential multi-cycle
add 24, A3, reg arch register

sub 23, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg arch register A3 used

map table

Instruction Queue A%ﬁ"e List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
Spring 2010 CSE 471 - R10000 Register 22

Renaming

R10000 Execution

In-order issue (have already fetched instructions)
* rename architectural registers to physical registers via a map table

 detect structural hazards for instruction queues (integer, memory &
FP) & active list

« issue up to 4 instructions to the instruction queues
Out-of-order execution (to increase ILP)

 instruction queues that indicate when an operand has been
calculated

« each instruction monitors the setting of the busy-register table
« set busy-register table entry for the destination register
* detect functional unit structural & RAW hazards
« dispatch instructions to functional units & execute them
In-order commit (to preserve precise interrupts)
» this & previous program-generated instructions have completed
» physical register in previous mapping returned to free list
 rollback on interrupts

Spring 2010 CSE 471 - R10000 Register 23
Renaming

Limits

Limits on out-of-order execution

e amount of ILP in the code

« scheduling window size (instruction queues)
* need to do associative searches & its effect on cycle time
« relatively few instructions in window

* number & types of functional units

« number of locations for values

« number of ports to memory

¢ Issue width

Spring 2010 CSE 471 - R10000 Register 24
Renaming

