
Synchronization

Coherency protocols guarantee that a reading processor (thread) sees the
most current update to shared data.

Often we want to follow program behaviors that are on a higher plane than
an individual access

Coherency protocols do not regulate access to shared data:
• Do not ensure that only one thread operates on shared data or a

shared hardware or software resource at a time
Critical sections order thread access to shared data

• Do not force threads to start executing particular sections of code
together
Barriers force threads to start executing particular sections of code
together

Spring 2010 1CSE 471 - Synchronization

Critical Sections: Motivating Example

Spring 2010 2CSE 471 - Synchronization

Thread 0

ld r4,0(r1)
blt r4,r2,label
sub r4,r2,r4
st r4,0(r1)
call give_cash

Thread 1

ld r4,0(r1)
blt r4,r2,label
sub r4,r2,r4
st r4,0(r1)
call give_cash

400

Tim
e

400

500

Acct

Critical Sections

A critical section
• a sequence of code that only one thread can execute at a time
• provides mutual exclusion

• a thread has exclusive access to the code & the data that it
accesses

• guarantees that only one thread can update the data at a time
• to execute a critical section, a thread

• acquires a lock that guards it
• executes its code
• releases the lock

The effect is to synchronize or order the access of threads with respect to
their accessing shared data

Spring 2010 3CSE 471 - Synchronization

Critical Sections: Correct Example

Spring 2010 4CSE 471 - Synchronization

400

Tim
e

300

500

Mem

Barriers

Barrier synchronization
• a barrier: point in a program which all threads must reach before

any thread can cross
• threads reach the barrier & then wait until all other threads

arrive
• all threads are released at once & begin executing code

beyond the barrier
• example implementation of a barrier:

• set a lock-protected counter to the number of processors
• each thread (assuming 1/processor) decrements it
• when the counter value becomes 0, all threads have crossed

the barrier
• code that implements the counter must be a critical section
• useful for:

• programs that execute in (semantic) phases
• synchronizing after a parallel loop

Spring 2010 5CSE 471 - Synchronization

Locking

Locking facilitates access to a critical section & shared data.

Locking protocol:
• synchronization variable or lock

• 0: lock is available
• 1: lock is unavailable because another thread holds it

• a thread obtains the lock before it can enter a critical section or
access shared data

• sets the lock to 1
• thread releases the lock before it leaves the critical section or after

its last access to shared data
• clears the lock

Spring 2010 6CSE 471 - Synchronization

Acquiring a Lock

Atomic exchange instruction: swap a value in a register & a value in
memory as one operation
• set the register to 1
• swap the register value & the lock value in memory
• new register value determines whether got the lock

AcquireLock:
li R3, #1 /* create lock value
swap R3, 0(R4) /* exchange register & lock
bnez R3, AcquireLock /* have to try again */

• also known as atomic read-modify-write a location in memory

Other examples
• test & set: tests the value in a memory location & sets it to 1
• fetch & increment/decrement: returns the value of a memory

location +/- 1

Spring 2010 7CSE 471 - Synchronization

Releasing a Lock

Store a 0 in the lock

Spring 2010 8CSE 471 - Synchronization

Load-linked & Store Conditional

Performance problem with atomic read-modify-write:
• 2 memory operations in one
• must hold the bus until both operations complete

Pair of instructions appears atomic
• avoids need for uninterruptible memory read & write pair
• load-locked & store-conditional

• load-locked returns the original (lock) value in memory
• if the contents of lock memory has not changed when the store-

conditional is executed, the processor still has the lock
• store-conditional returns a 1 if successful

GetLk: li R3, #1 /* create lock value
ll R2, 0(R1) /* read lock variable
...
sc R3, 0(R1) /* try to lock it
beqz R3, GetLk /* cleared if sc failed
... (critical section)

Spring 2010 9CSE 471 - Synchronization

Load-linked & Store Conditional

Implemented with special processor registers: lock-flag register & lock-
address register
• load-locked sets lock-address register to lock’s memory address &

lock-flag register to 1
• store-conditional returns lock-flag register value
• if still 1, then processor has the lock
• lock-flag register is cleared if the lock is written by another

processor
• lock-flag register cleared if context switch or interrupt

Spring 2010 10CSE 471 - Synchronization

Synchronization APIs

User-level software synchronization library routines constructed with
atomic hardware primitives

• efficient spin locks
• busywaiting until obtain the lock

• contention with atomic exchange causes invalidations (for
the write) & coherency misses (for the rereads)

• avoid if separate reading & testing the lock & updating it
• spinning done in the cache rather than over the bus

getLk: li R2, #1
spinLoop: ll R1, lockVariable

blbs R1, spinLoop
sc R2, lockVariable
beqz R2, getLk
.... (critical section)

st R0, lockVariable

Spring 2010 11CSE 471 - Synchronization

Synchronization APIs

User-level software synchronization library routines constructed with
atomic hardware primitives

• blocking locks
• block the thread immediately
• block the thread after a certain number of spins

Spring 2010 12CSE 471 - Synchronization

Synchronization Strategy

An example overall synchronization/coherence strategy:

• design cache coherency protocol for little interprocessor contention
for locks (the common case)

• add techniques to avoid performance loss if there is contention for
a lock & still provide low latency if no contention

Spring 2010 13CSE 471 - Synchronization

Synchronization Strategy

Have a race condition for acquiring a lock when it is unlocked
• O(p2) bus transactions for p contending processors with write-

invalidate

Two techniques to avoid O(p2)
• exponential back-off - software solution

• each processor retries at a different time
• successive retries done an exponentially increasing time later

• queuing locks - hardware solution
• each processor spins on a different location (a queue)
• when a lock is released, only the next processor see its lock go

“unlocked”
• other processors continue to spin/block
• lock is effectively passed from one processor to the next
• also addresses fairness (locks acquired in FIFO order)

Spring 2010 14CSE 471 - Synchronization

Trickiness

Writing programs that are both correct and parallel

• Choosing the right kind of lock
• Choosing the right locking granularity

• Coarse-grain are simple to get correct, but limit parallelism
• Fine-grain the opposite

• Acquiring & releasing nested locks in the correct order, or deadlock
• Avoiding locks when they aren’t really needed

Spring 2010 15CSE 471 - Synchronization

Transactional Memory

The idea:
• No locks, just shared data
• Execute critical sections speculatively
• Abort on conflicts

Spring 2010 16CSE 471 - Synchronization

begin_transaction();
if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;
accts[id_to].bal += amt; }

end_transaction();

Transactional Memory

begin_transaction :
• Checkpoint the registers
• Track all read addresses
• Buffer all the writes so they’re invisible to other processors

end_transaction :
• Any writes to the tracked read addresses”

• no: commit the writes to memory
• yes: abort the transaction by restoring the checkpoint & re-

executing

Spring 2010 17CSE 471 - Synchronization

begin_transaction();
if (accts[id_from].bal >= amt) {

accts[id_from].bal -= amt;
accts[id_to].bal += amt; }

end_transaction();

Transactional Memory

+ Has the programming simplicity of coarse-grain locks
+ Higher concurrency (parallelism) of fine-grain locks

• execute transactions speculatively
usually execute in parallel

• abort if a conflict
only serialized if data is actually write-shared

+ No lock acquisition overhead

Spring 2010 18CSE 471 - Synchronization

Transactional Memory

Issues:
• What if reads/writes don’t fit in the cache?
• What if the transaction gets swapped out in the middle?
• What if the transaction does a (not-abortable) I/O or syscall?
• How “transactionify” existing lock-based programs?
• Should transactions be implemented in hardware, software or both?

Spring 2010 19CSE 471 - Synchronization

