
Spring 2010 CSE 471 - Tomasulo 1

Out-of-Order Execution

Several implementations
• out-of-order completion

• CDC 6600 with scoreboarding

• *IBM 360/91 with Tomasulo’s algorithm based on 
reservation stations

• out-of-order completion leads to:
• imprecise interrupts
• WAR hazards
• WAW hazards

• in-order completion

• * MIPS R10000/R12000 & Alpha 21264/21364 with large 
physical register file & register renaming

• Intel Pentium Pro/Pentium III with the reorder buffer

Spring 2010 CSE 471 - Tomasulo 2

Out-of-order Hardware

In order to compute correct results, need to keep track of:
• which instruction is in which stage of the pipeline
• which registers are being used for reading/writing & by which 

instructions
• which operands are available
• which instructions have executed
• which instructions have completed

Each scheme has different hardware structures & different algorithms to do 
this



Spring 2010 CSE 471 - Tomasulo 3

Tomasulo’s Algorithm 

Tomasulo’s Algorithm (IBM 360/91)
• Introduced out-of-order execution capability plus register renaming

Motivation
• only 4 FP registers
• long FP delays
• wanted common compiler for all implementations

Spring 2010 CSE 471 - Tomasulo 4

Tomasulo’s Algorithm 

Key features & hardware structures
• distributed hazard detection & execution control

• data hazard checks & forwarding to eliminate RAW hazards
• register renaming to eliminate WAR & WAW hazards
• deciding which instruction to execute next

• multiple memories for storing data values: reservation stations
• common data bus
• dynamic memory disambiguation



Spring 2010 CSE 471 - Tomasulo 5

Hardware for Tomasulo’s Algorithm

Spring 2010 CSE 471 - Tomasulo 6

Tomasulo’s Algorithm : Key Features

Reservation station
• buffer for a functional unit that holds instructions stalled for RAW 

hazards & their source operands
• source operand can be a value or the name of another reservation 

station entry or a load buffer entry that will provide the value
• both operands don’t have to be available at the same time
• when both operand values are there, an instruction can be 

dispatched to its functional unit



Spring 2010 CSE 471 - Tomasulo 7

Tomasulo’s Algorithm: Key Features

Common data bus (CDB)
• connects functional units & load buffer to reservations stations, 

registers, store buffer
• ships results to all hardware that could want an updated value at 

the same time
• preview: eliminates RAW hazards: not have to wait until registers 

are written before consuming a value

Spring 2010 CSE 471 - Tomasulo 8

Tomasulo’s Algorithm: Key Features

Distributed execution control
• each reservation station decides when to dispatch instructions to its 

function unit

Distributed operand access
• Tag in each reservation station, register file & store buffer entry that 

indicates where its value will come from
• producer puts its computed value & a self-identifying tag on the 

common data bus
• each hardware data structure entry monitors the CDB & grabs a 

value if the tags match: snooping



Spring 2010 CSE 471 - Tomasulo 9

Tomasulo’s Algorithm: Key Features

Distributed Hazard Detection & Elimination

RAW hazards eliminated by forwarding
• source operand values that are produced after a consumer 

instruction’s registers are read are tagged by the functional unit or 
load buffer entry that produced them

• produced results are immediately forwarded to functional units on 
the common data bus

• don’t have to wait until for value to be written into the register file

Spring 2010 CSE 471 - Tomasulo 10

Tomasulo’s Algorithm: Key Features

Distributed Hazard Detection & Elimination

Eliminate WAR & WAW hazards by register renaming
• Name-dependent instructions refer to the producing reservation 

station or load buffer entries for their operands, not the registers
• Only the last instruction to write to a register updates it

• More reservation stations than registers, so eliminates more name 
dependences than a compiler can & exploits more parallelism

• examples on next slide



Recall that a tag in the reservation station/register file/store buffer 
indicates where the result will come from

Handling WAW hazards
divf F1,F0,F8F1’s tag originally specifies divf’s entry in the 

reservation station
...
subf F1,F8,F14 F1’s tag now specifies subf’s entry in the 

reservation station

no register will claim the divf result if it completes last

Spring 2010 CSE 471 - Tomasulo 11

Tomasulo’s Algorithm: Key Features

Spring 2010 CSE 471 - Tomasulo 12

Tomasulo’s Algorithm: Key Features

Handling WAR hazards
ld F1,_ register F1’s tag originally specifies the 

entry in the load buffer for the ld
addf _, F1,_ addf’s reservation station entry specifies 

ld’s entry in the load buffer for source 
operand 1

...
subf F1,_ register F1’s tag now specifies the 

registration station entry that holds subf

Does not matter if ld finishes after subf; F1 will no longer claim it & 
addf will use its tag (a load buffer entry) to get the loaded value



Spring 2010 CSE 471 - Tomasulo 13

Tomasulo’s Algorithm: Key Features

Dynamic memory disambiguation
• the issue: don’t want loads to bypass stores to the same location
• the solution: 

• loads associatively check addresses in store buffer
• if an address match, grab the value

Spring 2010 CSE 471 - Tomasulo 14

Tomasulo’s Algorithm: Execution Steps

Tomasulo functions
(assume the instruction has been fetched)

• issue & read
• structural hazard detection for reservation stations & load/store 

buffers
• issue if no hazard
• stall if hazard

• read registers for source operands
• put into reservation stations if values are in them
• put tag of producing functional unit or load buffer if not

(renaming the registers to eliminate WAR & WAW hazards)



Spring 2010 CSE 471 - Tomasulo 15

Tomasulo’s Algorithm: Execution Steps

• execute
• RAW hazard detection
• snoop on common data bus for missing operands
• dispatch instruction to a functional unit when obtain both 

operand values
• execute the operation
• calculate effective address & start memory operation

• write
• broadcast result & tag on the common data bus
• reservation stations, registers & store buffer entries obtain the 

value through snooping

Spring 2010 CSE 471 - Tomasulo 16

Tomasulo’s Algorithm: State

Tomasulo state: the information that the hardware needs to control 
distributed execution
• operation of the issued instructions waiting for execution (Op)

• located in reservation stations
• tags that indicate the producer for a source operand (Q)

• located in reservation stations, registers, store buffer entries
• Indicates what unit (reservation station or load buffer) will 

produce the operand
• special value (blank for us) if value already there

• operand values in reservation stations & load/store buffers (V)
• reservation station & load/store buffer busy fields (Busy)
• addresses in load/store buffers (for memory disambiguation)



Spring 2010 CSE 471 - Tomasulo 17

Example in the Book: 1
Instruction Status Table

first load
has

executed

Spring 2010 CSE 471 - Tomasulo 18

Example in the Book: 2
Instruction Status Table

second load
has

executed

yes
yes
yes

(Load2)
(Load2)

(Load2)

()

yes



Spring 2010 CSE 471 - Tomasulo 19

Example in the Book: 3
Instruction Status Table

subtract
has

executed

yes
yes
yes

(Load2)

(Load2)

()

yes

Spring 2010 CSE 471 - Tomasulo 20

Example in the Book: 4
Instruction Status Table

add
has

executed

yes
yes
yes

(Load2)

()

yes



Spring 2010 CSE 471 - Tomasulo 21

Example in the Book: 5
Instruction Status Table

multiply
has

executed

yes
yes
yes

()

yes

Spring 2010 CSE 471 - Tomasulo 22

Tomasulo’s Algorithm

Dynamic loop unrolling

LOOP: ld F0, 0(R1)
addf F0, F0, F1
st F0, 0(R1)
sub R1, R1, #8
bnez R1, LOOP

• addf and st in each iteration has a different tag for the F0 value
• only the last iteration writes to F0
• effectively completely unrolling the loop



Spring 2010 CSE 471 - Tomasulo 23

Tomasulo’s Algorithm

Dynamic loop unrolling

Nice features relative to static loop unrolling
• effectively increases number of registers (# reservations stations, 

load buffer entries, registers) but without register pressure
• dynamic memory disambiguation to prevent loads after stores with

the same address from getting old data if they execute first
• simpler (1960) compiler

Downside
• loop control instructions still executed
• much more complex hardware

Spring 2010 CSE 471 - Tomasulo 24

Dynamic Scheduling

Advantages over static scheduling
• more places to hold register values
• makes dispatch decisions dynamically, based on when instructions

actually complete & operands are available
• can completely disambiguate memory references

Effects of these advantages
⇒ more effective at exploiting instruction-level parallelism (especially 

given compiler technology at the time, but true now)
• increased instruction throughput
• increased functional unit utilization

⇒ efficient execution of code compiled for a different pipeline
⇒ simpler compiler in theory

Use both!


