
5/28/09

1

WaveScalar: the Executive Summary

Dataflow machine
•  good at exploiting ILP (dataflow parallelism)
•  also traditional coarser-grain parallelism

•  cheap thread management
•  low operand latency because of a hierarchical organization
•  memory ordering enforced through wave-ordered memory

•  no special dataflow languages

WaveScalar

Additional motivation:
•  increasing disparity between computation (fast transistors) &

communication (long wires)
•  increasing circuit complexity
•  decreasing fabrication reliability

5/28/09

2

Monolithic von Neumann Processors

A phenomenal success a few
years ago.

But in 2016?

 Performance
Centralized processing & control
Long wires
e.g., operand broadcast networks

 Complexity
40-75% of “design” time is design
verification

 Defect tolerance
1 flaw -> paperweight, earrings, …

WaveScalarʼs Microarchitecture

Good performance via distributed microarchitecture
•  hundreds of PEs
•  organized hierarchically for fast communication between

neighboring PEs
•  short point-to-point (producer to consumer) operand communication
•  dataflow execution – no centralized control
•  scalable

Low design complexity through simple, identical PEs
•  design one & stamp out thousands

Defect tolerance
•  route around a bad PE

5/28/09

3

Processing Element

•  Simple, small (.5M transistors)
•  5-stage pipeline (receive input

operands, match tags, instruction
issue, execute, send output)

•  Holds 64 (decoded) instructions
•  128-entry token store
•  4-entry output buffer

PEs in a Pod

•  Share operand bypass network
•  Back-to-back producer-consumer

execution across PEs
•  Relieve congestion on intra-

domain bus

5/28/09

4

Domain

Cluster

5/28/09

5

WaveScalar Processor

Long distance
communication
•  grid-based network
•  2-cycle hop/cluster
•  dynamic routing

Whole Chip

•  Can hold 32K instructions
•  Normal memory hierarchy
•  Traditional directory-based

cache coherence
•  ~400 mm2 in 90 nm

technology
•  1GHz.
•  ~85 watts

5/28/09

6

pod
PE1 PE2

operand latency vs.
parallelism (resource conflicts)

WaveScalar Instruction Placement

WaveScalar Instruction Placement

Place instructions in PEs to maximize data locality & instruction-level
parallelism.
•  Place instructions in a domain in demand-driven order

(determined by a profiling run)
•  Carve the dataflow graph of instructions into segments

•  a particular depth to make chains of dependent instructions
that will be placed in the same pod

•  a particular width to make multiple independent chains that
will be placed in different, but near-by pods

•  called DAWG (ʻDeep and Wide Graphʼ Placement)
•  Snakes segments across PES in the chip on demand
•  K-loop bounding to prevent instruction “explosion”

5/28/09

7

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

5/28/09

8

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Wave-ordered Memory

•  Compiler annotates memory
operations

•  Send memory requests
 in any order
•  Hardware reconstructs the

correct order

Load
Store

Load
Store Load

Store

3
4

8

5

6
7

  Sequence #

4
?

9

6

8
8

  Successor

2
3

?

4

5
4   Predecessor

5/28/09

9

Store buffer Wave-ordering Example

Load
Store

Load
Store Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3
3 4 2

Store buffer Wave-ordering Example

4 ? 3

Load
Store

Load
Store Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3
3 4 2

5/28/09

10

Store buffer Wave-ordering Example

4 ? 3

8 9 ?

Load
Store

Load
Store Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3
3 4 2

Store buffer Wave-ordering Example

4 ? 3

7 8 4

8 9 ?

Load
Store

Load
Store Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3
3 4 2

5/28/09

11

Wave-ordered Memory across Waves

Waves are loop-free sections of the
dataflow graph

Each dynamic wave has a wave number
Wave number is incremented between

waves

Ordering memory in a whole program:
•  wave-numbers
•  sequence number within a wave

WaveScalar Tag-matching

WaveScalar tag
•  thread identifier
•  wave number

Token: tag & value

<ThreadID:Wave#>.value

+

<2:5>.3 <2:5>.6

<2:5>.9

5/28/09

12

Single-thread Performance

Single-thread Performance per Area

5/28/09

13

Multithreading the WaveCache

Architectural-support for WaveScalar threads
•  instructions to start & stop memory orderings, i.e., threads
•  memory-free synchronization to allow exclusive access to data

(thread communicate instruction)
•  fence instruction to force all previous memory operations to fully

execute (to allow other threads to see the results of this oneʼs
memory ops)

Combine to build threads with multiple granularities
•  coarse-grain threads: 25-168X over a single thread; 2-16X over

CMP, 5-11X over SMT
•  fine-grain, dataflow-style threads: 18-242X over single thread
•  a demonstration that one can combine the two in the same

application (equake): 1.6X or 7.9X -> 9X

Creating & Terminating a Thread

5/28/09

14

Thread Creation Overhead

Performance of Coarse-grain Parallelism

5/28/09

15

CMP & SMT Comparison

Performance of Fine-grain Parallelism

5/28/09

16

Building WaveScalar

RTL-level implementation
•  some didnʼt believe it could be built in a normal-sized chip
•  some didnʼt believe it could achieve a decent cycle time and load-

use latencies
•  Verilog & Synopsis CAD tools

Different WaveCacheʼs for different applications
•  1 cluster: low-cost, low power, single-thread or embedded

•  42 mm2 in 90 nm process technology, 2.2 AIPC on Splash2
•  16 clusters: multiple threads, higher performance: 378 mm2 , 15.8

AIPC

Board-level FPGA implementation
•  OS & real application simulations

WaveScalar Collaborators
Susan Eggers (UW)
Mark Oskin (UW)

Chris Fischer (Science Applications International Corp.)
Dana Fujimoto (Microsoft)
Shen-Lui Lee (Google)
Christine Lovett (Xilinx)
Martha Mercaldi (Columbia U)
Ken Michaelson (Columbia U Medical School)
Andrew Petersen (U. of Toronto)
Andrew Putnam (Raytheon)
Andy Schwerin (Google)
David Sunderland (Amazon)
Steve Swanson (UC San Diego)

For more information:
http://www.cs.washington.edu/research/wavescalar

