
1 

Important Issues 

Cache coherency: 

• its definition 

• the hardware support 

• how invalidation-based protocols work 

• how coherency protocols match or take advantage of the MP 
design 

• how directories work 

 

Adding to our knowledge: 

• a 4th type of miss (coherency misses) 

• a 3rd locality (processor) 

• a 2nd application of snooping (bus-based coherency protocol) 

• a 2nd use of sub-block placement 

 

Spring 2011 1 CSE 471 - Cache Coherence 

Important Issues 

Anything in red or green: 

• 2 bus protocols 

• inclusion property 

• UMA vs. NUMA 

• role of local, home, remote nodes 

• bus vs. multipath 

• snooping vs. directory 

• snooping in a coherency protocol vs. snooping in Tomasulo’s 
algorithm 

• false sharing: why it occurs, what makes it worse, how to fix 

 

Spring 2011 2 CSE 471 - Cache Coherence 



2 

Apply What You Know 

A different 4th state: 

• what triggers state transitions 

• what are the state changes, given a sequence of memory 
operations 

 

A protocol that isn’t based on invalidations: 

• what triggers state transitions 

• what are the state changes, given a sequence of memory 
operations 

 

 

Spring 2011 3 CSE 471 - Cache Coherence 

Apply What You Know 

Example: 

 

Spring 2011 4 CSE 471 - Cache Coherence 

Assume you have a 4-state, write-invalidate protocol, in which three of the states 

are those used in the baseline 3-state protocol we studied in class and the fourth 

state is a new one, called private clean.  A private clean state means that there is 

only one cached copy of the data,  and that it is a read-only copy (i.e., it has 

thesame value as its backup in memory).   Using this new 4-state coherency 

protocol, fill  in the state values for a single cache block in each of the processors 

(P0, P1, P2), for each of the memory operations listed in the first column.  For this 

question, you can assume the multiprocessor is bus-based. 

Operations P0 P1 P2 

Initially invalid invalid invalid 

P1: loads B       

P2: loads B       

P0: stores B       

P1: loads B       

P1: stores B       


