What is a Parallel Architecture?

A parallel computer is a collection of processing elements that cooperate
to solve large problems fast.

Some broad issues:
* Resource Allocation:
* how many processing elements (PEs)?
» how powerful are the PEs?
* how much memory?
» Data access, Communication and Synchronization
» how do the PEs cooperate and communicate?
» how are data transmitted between PEs?
» what are the abstractions and primitives for cooperation?
+ Performance and Scalability
» how does it all translate into performance?
* how does it scale?

Issues in Multiprocessors

Which programming model for interprocessor communication

» shared memory
* regular loads & stores

+ IBM Power 7 (8), Intel Core 2 Quad (4), Cray T3D, Sun Niagra
3 (16), AMD Quad Phenon (4), Sun Ultra Enterprise (72)

* message passing
+ can directly access only private address space
+ explicit sends & receives for shared data
» IBM BlueGene/L (64), Intel Paragon

Spring 2011 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Shared memory
+ simple parallel programming model
+ global shared address space
* not worry about data locality but
get better performance when program for data placement
lower latency when data is local
» but can do data placement if it is crucial, but don’t
have to

+ hardware maintains data coherence & threads synchronize to
order processor’s accesses to shared data

+ like uniprocessor code so parallelizing by programmer or
compiler is easier

= can focus on program semantics, not inter-processor
communication or data layout

Spring 2011 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Shared memory
+ low latency (no message passing software) but
overlap of communication & computation

latency-hiding techniques can be applied to message passing
machines

+ higher bandwidth for small transfers but
usually the only choice

Spring 2011 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

overheads: copying, buffer management, protection
additional language constructs
need to program for nearest neighbor communication
+ no coherency hardware
+ good throughput on large transfers but
what about small transfers?

+ more scalable (memory latency for uniform memory doesn’t scale
with the number of processors) but

large-scale SM has distributed memory also
» hah! so you're going to adopt the message-passing
model?

Spring 2011 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Why there was a debate
+ little experimental data
* not separate implementation from programming model
+ can emulate one paradigm with the other

* MP on SM machine
message buffers in local (to each processor) memory
copy messages by Id/st between buffers

* SM on MP machine
Id/st becomes a message copy
sloooooooooow

Who won?

Spring 2011 CSE 471 - Multiprocessors

Issues in Multiprocessors

Which execution model
« control parallel
* identify & synchronize different asynchronous threads
+ data parallel
» same operation on different parts of the shared data space
+ dataflow (later)

Spring 2011 CSE 471 - Multiprocessors 7

Issues in Multiprocessors

How to express error-free parallelism (hardest problem)
+ language support
* HPF, ZPL
* runtime library constructs to support threads
+ coarse-grain, explicitly parallel C programs
+ automatic (compiler) thread creation

+ implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS
compilers

» HW & compiler support for maintaining correctness (today’s efforts)

Spring 2011 CSE 471 - Multiprocessors 8

Flynn’s Taxonomy

Classifies computers by control & data streams

Single Instruction, Single Data
(SISD)

(single-context uniprocessor)

Single Instruction, Multiple Data
(SIMD)

(single PC: Vector, CM-2)

Multiple Instruction, Single Data
(MISD)

(systolic arrays, streaming
processors, GPUs)

[Multiple Instruction, Multiple Data~|
MIMD

(Clusters, SMP servers)

Spring 2011

CSE 471 - Multiprocessors

Systolic Architectures

Replace single processor with array of regular (or specialized) processing

elements

Orchestrate data flow for high throughput with less memory access

PE

PE

—>» |PE[-----" —>| PE

Important Issues

» the programming model debate for inter-processor communication

* Flynn’s taxonomy

Spring 2011

CSE 471 - Multiprocessors

11

