
1

What is a Parallel Architecture?

A parallel computer is a collection of processing elements that cooperate
to solve large problems fast.

Some broad issues:

• Resource Allocation:

• how many processing elements (PEs)?

• how powerful are the PEs?

• how much memory?

• Data access, Communication and Synchronization

• how do the PEs cooperate and communicate?

• how are data transmitted between PEs?

• what are the abstractions and primitives for cooperation?

• Performance and Scalability

• how does it all translate into performance?

• how does it scale?

Issues in Multiprocessors

Which programming model for interprocessor communication

• shared memory

• regular loads & stores

• IBM Power 7 (8), Intel Core 2 Quad (4), Cray T3D, Sun Niagra
3 (16), AMD Quad Phenon (4), Sun Ultra Enterprise (72)

• message passing

• can directly access only private address space

• explicit sends & receives for shared data

• IBM BlueGene/L (64), Intel Paragon

Spring 2011 2 CSE 471 - Multiprocessors

2

Shared Memory vs. Message Passing

Shared memory

+ simple parallel programming model

• global shared address space

• not worry about data locality but

get better performance when program for data placement

 lower latency when data is local

• but can do data placement if it is crucial, but don’t
have to

• hardware maintains data coherence & threads synchronize to
order processor’s accesses to shared data

• like uniprocessor code so parallelizing by programmer or
compiler is easier

 can focus on program semantics, not inter-processor
communication or data layout

Spring 2011 3 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Shared memory

+ low latency (no message passing software) but

overlap of communication & computation

latency-hiding techniques can be applied to message passing

machines

+ higher bandwidth for small transfers but

usually the only choice

Spring 2011 4 CSE 471 - Multiprocessors

3

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

overheads: copying, buffer management, protection

additional language constructs

need to program for nearest neighbor communication

+ no coherency hardware

+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency for uniform memory doesn’t scale
with the number of processors) but

large-scale SM has distributed memory also

• hah! so you’re going to adopt the message-passing
model?

Spring 2011 5 CSE 471 - Multiprocessors

Shared Memory vs. Message Passing

Why there was a debate

• little experimental data

• not separate implementation from programming model

• can emulate one paradigm with the other

• MP on SM machine

message buffers in local (to each processor) memory

 copy messages by ld/st between buffers

• SM on MP machine

ld/st becomes a message copy

 sloooooooooow

Who won?

Spring 2011 6 CSE 471 - Multiprocessors

4

Issues in Multiprocessors

Which execution model

• control parallel

• identify & synchronize different asynchronous threads

• data parallel

• same operation on different parts of the shared data space

• dataflow (later)

Spring 2011 7 CSE 471 - Multiprocessors

Issues in Multiprocessors

How to express error-free parallelism (hardest problem)

• language support

• HPF, ZPL

• runtime library constructs to support threads

• coarse-grain, explicitly parallel C programs

• automatic (compiler) thread creation

• implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS
compilers

• HW & compiler support for maintaining correctness (today’s efforts)

Spring 2011 8 CSE 471 - Multiprocessors

5

Flynn’s Taxonomy

Classifies computers by control & data streams

Spring 2011 9 CSE 471 - Multiprocessors

Single Instruction, Single Data
(SISD)

(single-context uniprocessor)

Single Instruction, Multiple Data
(SIMD)

(single PC: Vector, CM-2)

Multiple Instruction, Single Data
(MISD)

(systolic arrays, streaming
processors, GPUs)

Multiple Instruction, Multiple Data
MIMD

(Clusters, SMP servers)

Systolic Architectures

Replace single processor with array of regular (or specialized) processing

elements

Orchestrate data flow for high throughput with less memory access

M

PE

M

PE PE PE

6

Important Issues

• the programming model debate for inter-processor communication

• Flynn’s taxonomy

Spring 2011 11 CSE 471 - Multiprocessors

