## Why Multiprocessors?

Moore's Law predicted a doubling of processor performance every couple of years

- true until about 2000

Limits on the performance of a single processor: what are they?

## Why Multiprocessors

Utilizes coarser granularities than ILP
Lots of workload opportunity

- Scientific computing/supercomputing
- Examples: weather simulation, aerodynamics, protein folding
- Each processor computes for a part of the grid
- Server workloads
- Example: airline reservation database
- Many concurrent updates, searches, lookups, queries
- Processors handle different requests
- Media workloads
- Processors compress/decompress different parts of image/frames
- Desktop workloads ...
- Gaming workloads ...

What would you do with a billion transistors? Or more?

## Multiprocessors

## Low-end

- bus-based
- simple, but a bottleneck
- broadcast-based cache coherency protocol
- physically centralized memory
- uniform memory access (UMA machine)
- most of today's small CMPs (Intel Core 2 Quad, AMD Quad-Core Operon "Barcelona", SunFire (16))



## Multiprocessors

High-end

- multiple-path interconnect
- higher bandwidth
- longer memory latencies
- more scalable
- point-to-point cache coherency protocol
- physically distributed memory
- non-uniform memory access (NUMA machine)
- could have processor clusters
- SGI Origin, AMD HyperTransport, Cray T3D, IBM SP-2, Intel Paragon



## Comparison of Issue Capabilities



