
5/8/2012

1

Spring 2012 CSE 471 - Dataflow Machines 1

Von Neumann Execution Model

Fetch:

• send PC to memory

• transfer instruction from memory to CPU

• increment PC

Decode & read ALU input sources

Execute

• an ALU operation

• memory operation

• branch target calculation

Store the result in a register or memory

Spring 2012 CSE 471 - Dataflow Machines 2

Von Neumann Execution Model

Execution is comprised of a linear series of addressable instructions

• next instruction to be executed is pointed to by the PC

• send PC to memory

• next instruction to execute depends on what happened during the
execution of the current instruction

Instruction operands reside in a centralized processor memory (GPRs)

5/8/2012

2

Spring 2012 CSE 471 - Dataflow Machines 3

Dataflow Execution Model

Instructions & initial input values are already in the processor:

Operands arrive from a producer instruction via a network

Check to see if all an instruction’s operands are there

Execute

• an ALU operation

• memory operation

• branch target calculation

Send the result

• to the consumer instructions or memory

Spring 2012 CSE 471 - Dataflow Machines 4

Dataflow Execution Model

Execution is driven by the availability of input operands

• operands are consumed

• output is generated

• no PC

Result operands are passed directly to consumer instructions

• no register file

5/8/2012

3

Promise of Dataflow Parallelism

Spring 2012 5 CSE 471 - Dataflow Machines

Spring 2012 CSE 471 - Dataflow Machines 6

Dataflow Computers

Motivation:

• exploit instruction-level parallelism on a massive scale

• more fully utilize all processing elements

Believed this was possible if:

1. expose instruction-level parallelism by using a functional-style

programming language

• no side effects wrt generating new values

• only restrictions were producer-consumer

2. scheduled code for execution on the hardware greedily

3. hardware support for data-driven execution

5/8/2012

4

Spring 2012 CSE 471 - Dataflow Machines 7

Dataflow Execution

All computation is data-driven.

• binary is represented as a directed graph of data dependences

• nodes are operations executing in a logical processor

• values travel on arcs

• WaveScalar instruction

+

b

a+b

a

opcode destination1 destination2

Spring 2012 CSE 471 - Dataflow Machines 8

Dataflow Execution

Data-dependent operations are connected, producer to consumer

Code & initial values loaded into memory

Execute according to the dataflow firing rule

• when operands of an instruction have arrived on all input arcs,

instruction may execute

• value on input arcs is removed

• computed value placed on output arc

+

5/8/2012

5

Spring 2012 CSE 471 - Dataflow Machines 9

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2012 CSE 471 - Dataflow Machines 10

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

5/8/2012

6

Spring 2012 CSE 471 - Dataflow Machines 11

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2012 CSE 471 - Dataflow Machines 12

Dataflow Execution

Control

• steer () merge

• execute one path after the condition variable is known (steer)

 or

• execute both paths & pass one set of values at the end (merge)

• convert control dependence to data dependence

 predicate

T path F path

value

 predicate

T path value F path value

value

5/8/2012

7

Spring 2012 CSE 471 - Dataflow Machines 13

WaveScalar Control

(steer) (merge)

Spring 2012 CSE 471 - Dataflow Machines 14

ISA for a Dataflow Computer

Instructions

• operation

• names of destination instructions

Data packets, called Tokens

• value

• tag to identify the operand & match it with its fellow operands in the
same dynamic instruction

• architecture dependent

– instruction number

– iteration number

– activation/context number (for functions, especially
recursive)

– thread number

• Dataflow computer executes a program by receiving, matching
tags, computing & sending out tokens.

5/8/2012

8

Spring 2012 CSE 471 - Dataflow Machines 15

Types of Dataflow Computers

static:

• one copy of each instruction

• no simultaneously active iterations, no recursion

•

Spring 2012 CSE 471 - Dataflow Machines 16

Types of Dataflow Computers

dynamic

• multiple copies of each instruction

• better performance from increased ILP

• gate counting technique to prevent instruction explosion

k-bounding

• extra instruction with K tokens on its input arc; passes a token to
1st instruction of a loop iteration

• 1st instruction consumes a token (needs one extra operand to
execute)

• last instruction in loop iteration produces another token at end of
iteration

• limits active iterations to k

•

5/8/2012

9

Spring 2012 CSE 471 - Dataflow Machines 17

Canonical Dataflow Computer

Network

Token

store

Waiting

Matching

Instruction

fetch
Execute

Token queue

Form

token

Network

Network

Program

store

Spring 2012 CSE 471 - Dataflow Machines 18

Problems with Dataflow Computers

1. Memory ordering

• dataflow cannot guarantee a correct ordering of memory operations

2. Language compatibility

• dataflow computer programmers could not use mainstream
programming languages, such as C

• could not handle “complex” data structures

• developed special languages in which order didn’t matter

5/8/2012

10

Spring 2012 CSE 471 - Dataflow Machines 19

Problems with Dataflow Computers

3. Scalability:

• big token store

• side-effect-free programming language with no mutable data
structures

• each update creates a new data structure

• 1000 tokens for 1000 data items even if the same value

• slow access

• aggravated by the state of processor technology at the time

• associative search impossible; accessed with slower hash
function

• delays in processing (only so many functional units, arbitration
both for PEs and storing of result, long wires)

Spring 2012 CSE 471 - Dataflow Machines 20

Dataflow Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

5/8/2012

11

Spring 2012 CSE 471 - Dataflow Machines 21

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2012 CSE 471 - Dataflow Machines 22

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

5/8/2012

12

Spring 2012 CSE 471 - Dataflow Machines 23

Example to Illustrate the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

Load-store ordering issue

*

Load

Store

+

j i

*

b

A

+

+

Spring 2012 CSE 471 - Dataflow Machines 24

Partial Solutions

Solutions led away from pure dataflow execution

Data representation in memory

• I-structures:

• write once; read many times

• early reads are deferred until the write

• M-structures:

• multiple reads & writes, but they must alternate

• reusable structures which could hold multiple values

5/8/2012

13

Spring 2012 CSE 471 - Dataflow Machines 25

Partial Solutions

Local (register) storage for back-to-back instructions

Frames within the token store for a sequence of instructions

• example: each frame stores the data for one iteration or one thread

• not have to search entire token store (use an offset to the frame)

Physically partition token store & place each partition with a PE

• dataflow execution within coarse-grain threads

