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Von Neumann Execution Model 

Fetch: 

• send PC to memory 

• transfer instruction from memory to CPU 

• increment PC 

 

Decode & read ALU input sources 

 

Execute 

• an ALU operation 

• memory operation 

• branch target calculation 

 

Store the result in a register or memory 
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Von Neumann Execution Model 

Execution is comprised of a linear series of addressable instructions 

• next instruction to be executed is pointed to by the PC 

• send PC to memory 

• next instruction to execute depends on what happened during the 
execution of the current instruction 

 

Instruction operands reside in a centralized processor memory (GPRs) 
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Dataflow Execution Model 

Instructions & initial input values are already in the processor: 

 

Operands arrive from a producer instruction via a network 

 

Check to see if all an instruction’s operands are there 

 

Execute 

• an ALU operation 

• memory operation 

• branch target calculation 

 

Send the result 

• to the consumer instructions or memory 
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Dataflow Execution Model 

Execution is driven by the availability of input operands 

• operands are consumed 

• output is generated 

• no PC 

 

Result operands are passed directly to consumer instructions 

• no register file 
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Promise of Dataflow Parallelism 

Spring 2012 5 CSE 471 - Dataflow Machines 
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Dataflow Computers 

Motivation: 

• exploit instruction-level parallelism on a massive scale 

• more fully utilize all processing elements 

 

Believed this was possible if: 

1. expose instruction-level parallelism by using a functional-style 

programming language  

• no side effects wrt generating  new values 

• only restrictions were producer-consumer 

2. scheduled code for execution on the hardware greedily 

3. hardware support for data-driven execution 
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Dataflow Execution 

All computation is data-driven. 

• binary is represented as a directed graph of data dependences 

• nodes are operations executing in a logical processor 

• values travel on arcs 

 

 

 

 

 

 

• WaveScalar instruction 
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Dataflow Execution 

Data-dependent operations are connected, producer to consumer 

Code & initial values loaded into memory 

Execute according to the dataflow firing rule 

• when operands of an instruction have arrived on all input arcs, 

instruction may execute 

• value on input arcs is removed 

• computed value placed on output arc 

     

+ 
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Dataflow Example 

A[j + i*i] = i; 

 

b = A[i*j]; 

* 

Load 

Store 

+ 

j i 

* 

b 

A 

+ 

+ 
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Dataflow Example 
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Dataflow Execution 

Control 

• steer ( )    merge  

 

 

 

 

 

 

 

 

• execute one path after the condition variable is known (steer) 

  or  

• execute both paths & pass one set of values at the end (merge) 

• convert control dependence to data dependence 

 predicate 

T path F path 

value 

 predicate 

T path value F path value 

value 
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WaveScalar Control 

(steer) (merge)
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ISA for a Dataflow Computer 

Instructions 

• operation  

• names of destination instructions  

 

Data packets, called Tokens 

• value 

• tag to identify the operand & match it with its fellow operands in the 
same dynamic instruction 

• architecture dependent 

– instruction number 

– iteration number 

– activation/context number (for functions, especially 
recursive) 

– thread number 

• Dataflow computer executes a program by receiving, matching 
tags, computing & sending out tokens. 
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Types of Dataflow Computers 

 

static: 

• one copy of each instruction 

• no simultaneously active iterations, no recursion 

 
•      
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Types of Dataflow Computers 

 

dynamic 

• multiple copies of each instruction 

• better performance from increased ILP 

• gate counting technique to prevent instruction explosion 

 

 

k-bounding 

• extra instruction with K tokens on its input arc;  passes a token to 
1st instruction of a loop iteration 

• 1st instruction consumes a token (needs one extra operand to 
execute) 

• last instruction in loop iteration produces another token at end of 
iteration 

• limits active iterations to k 

 
•      
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Canonical Dataflow Computer 
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Problems with Dataflow Computers 

 

1. Memory ordering 

• dataflow cannot guarantee a correct ordering of memory operations 

 

2. Language compatibility 

• dataflow computer programmers could not use mainstream 
programming languages, such as C 

• could not handle “complex” data structures 

• developed special languages in which order didn’t matter 
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Problems with Dataflow Computers 

3. Scalability: 

• big token store 

• side-effect-free programming language with no mutable data 
structures 

• each update creates a new data structure 

• 1000 tokens for 1000 data items even if the same value 

• slow access 

• aggravated by the state of processor technology at the time 

• associative search impossible; accessed with slower hash 
function 

• delays in processing (only so many functional units, arbitration 
both for PEs and storing of result, long wires) 
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Dataflow Example 

A[j + i*i] = i; 

 

b = A[i*j]; 

* 

Load 

Store 

+ 

j i 

* 

b 

A 

+ 

+ 
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Example to Illustrate the Memory Ordering Problem 

A[j + i*i] = i; 

 

b = A[i*j]; 
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+ 
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Example to Illustrate the Memory Ordering Problem 

A[j + i*i] = i; 

 

 

b = A[i*j]; 

 

 

Load-store ordering issue 

* 

Load 

Store 

+ 

j i 

* 

b 

A 

+ 

+ 
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Partial Solutions 

Solutions led away from pure dataflow execution 

 

Data representation in memory 

• I-structures:  

• write once; read many times 

• early reads are deferred until the write 

• M-structures:  

• multiple reads & writes, but they must alternate 

• reusable structures which could hold multiple values 
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Partial Solutions 

Local (register) storage for back-to-back instructions 

 

 

 

Frames within the token store for a sequence of instructions 

• example: each frame stores the data for one iteration or one thread 

• not have to search entire token store (use an offset to the frame) 

 

 

Physically partition token store & place each partition with a PE 

• dataflow execution within coarse-grain threads 


