Dynamic Scheduling

Why go out of style?
* expensive hardware for the time (actually, still is, relatively)
» register files grew so less register pressure
» early RISCs had lower CPIs

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

Dynamic Scheduling

Why come back?
» higher chip densities
» hardware design was generalized
+ greater need to hide other kinds of latencies as:
« discrepancy between CPU & memory speeds increased
» branch misprediction penalty increased from
superpipelining
» used a more general register renaming mechanism that
includes loads & branches
* hardware design was updated
* need to preserve precise interrupts
+ therefore commit instructions in-order
* more need to expolit ILP
* processors now issue multiple instructions at the same time

2 styles: large physical register file & reorder buffer
(R10000-style) (PentiumPro-style)

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

Register Renaming with A Physical Reqgister File

Register renaming provides a mapping between 2 register sets
« architectural registers defined by the ISA
* physical registers implemented in the CPU
* hold results of the instructions committed so far

 hold results of subsequent instructions that have executed but
have not yet committed

« more of them than architectural registers

* ~issue width * # pipeline stages between register
renaming & commit

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

Register Renaming with A Physical Reqgister File

How does it work?:

» An architectural register is mapped to a physical register during a
register renaming stage in the pipeline

+ destination registers create mappings
* source registers in subsequent instructions use mappings

« After renaming, operands are called by their physical register
number

» values accessed using physical register numbers

» hazards determined by comparing physical register numbers,
not architectural register numbers

* results are written using physical register numbers

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

A Register Renaming Example

Code Segment Register Mapping Comments
1d r7,0(r6) r7 -> pl plis allocated
add r8, r9, r7 r8 -> p2 use p1, not r7

p3 is allocated
sub r7, r2, r3 r7 -> p3 plis deallocated_
when sub commits

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

Register Renaming with A Physical Reqgister File

Effects:
* reduces WAW and WAR hazards (name dependences)
* increases ILP

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

An Implementation (R10000)

Modular design with regular hardware data structures

Structures for register renaming
* 64 physical registers (each, for integer & FP)

* map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

« current means latest defined destination register

» accessed with the architectural register number of a source
operand

» produces a physical register number for that operand

» adestination register is assigned a new physical register number
from a free register list (separate, for integer & FP)

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

An Implementation (R10000)

Instruction “queues” (integer, FP & data transfer)
+ contains decoded & mapped instructions with the current
physical register mappings
* instructions entered into free locations in the 1Q
« sit there until they are dispatched to functional units

« somewhat analogous to Tomasulo reservation stations
but no value fields or valid bits & more centralized

+ used to determine when operands are available

« compare physical register numbers of each source
operand for instructions in the 1Q to physical register
numbers of destination values just computed

» determines when an appropriate functional unit is available
+ dispatches instructions to functional units

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

An Implementation (R10000)

active list for all uncommitted instructions
» the mechanism for maintaining precise interrupts
* instructions entered in program-generated order
« allows instructions to complete in program-generated order
* instructions are removed from the active list:
» when they are committed - an instruction commits if:
« the instruction has completed execution
+ all instructions ahead of it have committed
* branch is mispredicted
+ an exception occurs
. conta[ns the previous architectural-to-physical destination register
mapping
+ used to recreate the map table for instruction restart after an
exception

* instructions in the other hardware structures & the functional units
are identified by their active list location

Spring 2012 CSE 471 - Out-of-Order Execution 9
with Register Renaming

An Implementation (R10000)

busy-register table (integer & FP):
+ indicates whether a physical register contains a value
* somewhat analogous to Tomasulo’s register status
» used to determine operand availability

« bitis set when a register is mapped & leaves the free list (not
available yet)

» cleared when a FU writes the register (now there’s a value)

Spring 2012 CSE 471 - Out-of-Order Execution 10
with Register Renaming

ITLB | BHT / Instruction Cache 4 instr | Predecode
8 entry - BTB | 32K, two-way associative Unit e IRV
—t 4 Hesume g ShA
< - 3 RAM
Maj :
Table § ;
ol eh2e :
hen Data
It il SRAM
Memory integer] PW?%M.)
— o FP redict
e o . a ? 512K
2313 %W%?. — | — 15950"';??? A m— e L Xios e -16M |
Integer Registers o FP Registers i _
84 x 64 bits o 64 < 64 bits g
: 2
DEERACERE. TR
T : S S =1
| Address| | ALU1 ALU2 FP| FP FP e £ pr3
Adder < = | Mult Adde]
B lvlrtua! ; 2 2
addr o O?)H é
h r i Il
©
Main TLB phys addr Data Cache =
64 entries 32K, two-way associative

-
=

Spring 2012 CSE 471 - Out-of-Order Execution
with Register Renaming

R10000 Die Photo

R10K die size 16.6mm x 17.9mm

Spring 2012 CSE 471 - Out-of-Order Execution 12
with Register Renaming

The R10000 in Action 1

1d 23, #ireqg) arch register
potential multi-cycle
add ad, A3, reg arch register

sub A3, reg, reg arch register A3 redefined
name dependence

or a5, A3, reg arch register A3 used

map table

Instruction Queue A‘%:tive List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
CSE 471 - Out-of-Order Execution 13

with Register Renaming

The R10000 in Action 2

1d 23, #ireqg) arch register
potential multi-cycle

add 24, A3, reg
sub A3, reg, reg

or a5, A3, reg
map table
0
:
a ree list
3B
‘/31
Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
#«Px |A3 [notdone
CSE 471 - Out-of-Order Execution 14

with Register Renaming

The R10000 in Action 3

1d A3, #ireg) arch register
potential multi-cycle

—l add 24, A3, reg
sub &3, reg, reg
or 25, A3, reg
map table
0
3
4
AP
/31
Instruction Queue / Active List
Ins | 51 | Avail |Dest| AL tag Dest | Arch | Done bit
#Px [A3 |notdone
Spring 2012 CSE 471 - Out-of-Order Execution 15
with Register Renaming
The R10000 in Action 4
1d 23, #ireg) arch register
potential multi-cycle
add ad, A3, reg arch register
— sub &3, reg, reg
or 5, A3, reg
map table
:
5
31
A - N
Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
«Px |A3 |notdone
Fob—reirk & P28 «Py |A4 |notdone
add P21 1
Spring 2012 CSE 471 - Out-of-Order Execution 16

with Register Renaming

The R10000 in Action 5

1d 23, #ireqg) arch register
potential multi-cycle
add ad, A3, reg arch register

sub A3, reg, reg arch register A3 redefined
name dependence

—l or 5, A3, reg
map table

Instruction Gueue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
: 4 —R22 2 APx [A3 [notdone
Fe—rtirh—8 «Py |A4 |notdeone
A3 |done
add 1 P21 1
Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

The R10000 in Action 5 : Interrupts 1

1d 23, #ireqg) arch register
potential multi-cycle
add 24, A3, reg arch register

zub A3, req, reg arch register A3 redefined
nhame dependence

— or n5, A3, reg
map table

Instruction Queue / Active List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
el a8 2 APx |A3 |notdone
Fo—rurh—8 «Py |A4 |notdone
A3 |done
add 1 P21 1
Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

The R10000 in Action: Interrupts 2

1d 23, {(reqg)

add x4, A3, reg

arch register
potential multi-cycle

arch register

— sub A3, reg, reg arch register A3 redefined
name dependence
or a5, A3, reg arch register A3 used
map table
0
e
4 (21
3 | Pz
/31
Instruction Gueue A‘%:tive List
Ins ‘ S1 | Avail |Dest| AL tag Dest | Arch | Done bit
. : «Px |A3 |notdone
-].-d—’-wrk-'—é—'--"—'—e— «Py |A4 |notdone
add [P0 1 P21 | 1
Spring 2012 CSE 471 - Out-of-Order Execution 19
with Register Renaming
The R10000 in Action: Interrupts 3
1d a3, #ireq) arch register
potential multi-cycle
— add ad, A3, reg arch register
sub A3, reg, reg arch register A3 redefined
name dependence
or A5, A3, reg arch register A3 used
map table
0
:
4
5
Instruction Queue A%ﬁve List
Ins ‘ 31 | Avail |Dest| AL tag Dest | Arch | Done bit
i - #«Px |A3 |notdone
PR N I
T —8— i
Spring 2012 CSE 471 - Out-of-Order Execution 20

with Register Renaming

10

The R10000 in Action: Interrupts 4

— 1d 23, #ireqg) arch register
potential multi-cycle
add ad, A3, reg arch register

sub A3, reg, reg arch register A3 redefined
name dependence

or a5, A3, reg arch register A3 used

map table

Instruction Gueue A‘%:tive List
Ins | S1 | Avail |Dest| AL tag Dest | Arch | Done bit
Spring 2012 CSE 471 - Out-of-Order Execution 21

with Register Renaming

R10000 Execution

In-order issue (have already fetched instructions)
* rename architectural registers to physical registers via a map table

« detect structural hazards for instruction queues (integer, memory &
FP) & active list

+ issue up to 4 instructions to the instruction queues
Out-of-order execution (to increase ILP)

* instruction queues that indicate when an operand has been
calculated

« each instruction monitors the setting of the busy-register table
« set busy-register table entry for the destination register
« detect functional unit structural & RAW hazards
« dispatch instructions to functional units & execute them
In-order commit (to preserve precise interrupts)
+ this & previous program-generated instructions have completed
» physical register in previous mapping returned to free list
« rollback on interrupts

Spring 2012 CSE 471 - Out-of-Order Execution 22
with Register Renaming

11

Limits

Limits on out-of-order execution

amount of ILP in the code

scheduling window size (instruction queues)
* need to do associative searches & its effect on cycle time
« relatively few instructions in window

number & types of functional units

number of locations for values

number of ports to memory

issue width

Spring 2012 CSE 471 - Out-of-Order Execution 23

with Register Renaming

12

