
1

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

1

Dynamic Scheduling

Why go out of style?

• expensive hardware for the time (actually, still is, relatively)

• register files grew so less register pressure

• early RISCs had lower CPIs

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

2

Dynamic Scheduling

Why come back?

• higher chip densities

• hardware design was generalized

• greater need to hide other kinds of latencies as:

• discrepancy between CPU & memory speeds increased

• branch misprediction penalty increased from
superpipelining

• used a more general register renaming mechanism that
includes loads & branches

• hardware design was updated

• need to preserve precise interrupts

• therefore commit instructions in-order

• more need to expolit ILP

• processors now issue multiple instructions at the same time

2 styles: large physical register file & reorder buffer

 (R10000-style) (PentiumPro-style)

2

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

3

Register Renaming with A Physical Register File

Register renaming provides a mapping between 2 register sets

• architectural registers defined by the ISA

• physical registers implemented in the CPU

• hold results of the instructions committed so far

• hold results of subsequent instructions that have executed but
have not yet committed

• more of them than architectural registers

• ~ issue width * # pipeline stages between register
renaming & commit

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

4

Register Renaming with A Physical Register File

How does it work?:

• An architectural register is mapped to a physical register during a

register renaming stage in the pipeline

• destination registers create mappings

• source registers in subsequent instructions use mappings

• After renaming, operands are called by their physical register

number

• values accessed using physical register numbers

• hazards determined by comparing physical register numbers,

not architectural register numbers

• results are written using physical register numbers

3

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

5

A Register Renaming Example

Code Segment Register Mapping Comments

ld r7,0(r6) r7 -> p1 p1 is allocated
...

add r8, r9, r7 r8 -> p2 use p1, not r7

...

sub r7, r2, r3 r7 -> p3

p3 is allocated
p1 is deallocated
when sub commits

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

6

Register Renaming with A Physical Register File

Effects:

• reduces WAW and WAR hazards (name dependences)

• increases ILP

4

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

7

An Implementation (R10000)

Modular design with regular hardware data structures

Structures for register renaming

• 64 physical registers (each, for integer & FP)

• map tables for the current architectural-to-physical register

mapping (separate, for integer & FP)

• current means latest defined destination register

• accessed with the architectural register number of a source

operand

• produces a physical register number for that operand

• a destination register is assigned a new physical register number

from a free register list (separate, for integer & FP)

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

8

An Implementation (R10000)

Instruction “queues” (integer, FP & data transfer)

• contains decoded & mapped instructions with the current

physical register mappings

• instructions entered into free locations in the IQ

• sit there until they are dispatched to functional units

• somewhat analogous to Tomasulo reservation stations

but no value fields or valid bits & more centralized

• used to determine when operands are available

• compare physical register numbers of each source

operand for instructions in the IQ to physical register

numbers of destination values just computed

• determines when an appropriate functional unit is available

• dispatches instructions to functional units

5

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

9

An Implementation (R10000)

active list for all uncommitted instructions

• the mechanism for maintaining precise interrupts

• instructions entered in program-generated order

• allows instructions to complete in program-generated order

• instructions are removed from the active list:

• when they are committed - an instruction commits if:

• the instruction has completed execution

• all instructions ahead of it have committed

• branch is mispredicted

• an exception occurs

• contains the previous architectural-to-physical destination register
mapping

• used to recreate the map table for instruction restart after an
exception

• instructions in the other hardware structures & the functional units
are identified by their active list location

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

10

An Implementation (R10000)

busy-register table (integer & FP):

• indicates whether a physical register contains a value

• somewhat analogous to Tomasulo’s register status

• used to determine operand availability

• bit is set when a register is mapped & leaves the free list (not

available yet)

• cleared when a FU writes the register (now there’s a value)

6

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

11

64 64

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

12

R10000 Die Photo

7

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

13

The R10000 in Action 1

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

14

The R10000 in Action 2

8

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

15

The R10000 in Action 3

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

16

The R10000 in Action 4

9

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

17

The R10000 in Action 5

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

18

The R10000 in Action 5 : Interrupts 1

10

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

19

The R10000 in Action: Interrupts 2

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

20

The R10000 in Action: Interrupts 3

11

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

21

The R10000 in Action: Interrupts 4

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

22

R10000 Execution

In-order issue (have already fetched instructions)

• rename architectural registers to physical registers via a map table

• detect structural hazards for instruction queues (integer, memory &
FP) & active list

• issue up to 4 instructions to the instruction queues

Out-of-order execution (to increase ILP)

• instruction queues that indicate when an operand has been
calculated

• each instruction monitors the setting of the busy-register table

• set busy-register table entry for the destination register

• detect functional unit structural & RAW hazards

• dispatch instructions to functional units & execute them

In-order commit (to preserve precise interrupts)

• this & previous program-generated instructions have completed

• physical register in previous mapping returned to free list

• rollback on interrupts

12

Spring 2012 CSE 471 - Out-of-Order Execution

with Register Renaming

23

Limits

Limits on out-of-order execution

• amount of ILP in the code

• scheduling window size (instruction queues)

• need to do associative searches & its effect on cycle time

• relatively few instructions in window

• number & types of functional units

• number of locations for values

• number of ports to memory

• issue width

