
4/17/2012

1

Synchronization

Coherency protocols guarantee that a reading processor (thread) sees the
most current update to shared data.

Often we want to follow program behaviors that are on a higher plane than
an individual access

Coherency protocols do not regulate access to shared data:

• Do not ensure that only one thread does a series of accesses to
shared data or a shared hardware or software resource at a time

 Critical sections order thread access to shared data

• Do not force threads to start executing particular sections of code
together

 Barriers force threads to start executing particular sections of code
together

Spring 2012 1 CSE 471 - Synchronization

Critical Sections: Motivating Example

Spring 2012 2 CSE 471 - Synchronization

Thread 0

 ld r4,0(r1)

 blt r4,r2,label

 sub r4,r2,r4

 st r4,0(r1)

 call give_cash

Thread 1

 ld r4,0(r1)

 blt r4,r2,label

 sub r4,r2,r4

 st r4,0(r1)

 call give_cash

400

T
im

e

400

500

Acct

4/17/2012

2

Critical Sections

A critical section

• a sequence of code that only one thread can execute at a time

• provides mutual exclusion

• a thread has exclusive access to the code & the data that it
accesses

• guarantees that only one thread can update shared data at a
time

• to execute a critical section, a thread

• acquires a lock that guards it

• executes its code

• releases the lock

The effect is to synchronize or order the access of threads with respect to
their accessing shared data

Spring 2012 3 CSE 471 - Synchronization

Critical Sections: Correct Example

Spring 2012 4 CSE 471 - Synchronization

Thread 0

 ld r4,0(r1)

 blt r4,r2,label

 sub r4,r2,r4

 st r4,0(r1)

 call release (lock)

 call give_cash

Thread 1

 ld r4,0(r1)

 blt r4,r2,6

 sub r4,r2,r4

 st r4,0(r1)

 call release

 call give_cash

400

T
im

e

300

500

Mem

4/17/2012

3

Barriers

Barrier synchronization

• a barrier: point in a program which all threads must reach before
any thread can cross

• threads reach the barrier & then wait until all other threads
arrive

• all threads are released at once & begin executing code
beyond the barrier

• example implementation of a barrier:

• set a lock-protected counter to the number of threads

• each thread decrements the counter

• when the counter value becomes 0, all threads have crossed
the barrier

• code that implements the counter must be a critical section

• useful for:

• programs that execute in (semantic) phases

• synchronizing after a parallel loop

Spring 2012 5 CSE 471 - Synchronization

Locking

Locking facilitates access to a critical section & shared data.

Locking protocol:

• synchronization variable or lock

• 0: lock is available

• 1: lock is unavailable because another thread holds it

• a thread obtains the lock before it can enter a critical section or

access shared data

• sets the lock to 1

• thread releases the lock before it leaves the critical section or after

its last access to shared data

• clears the lock

Spring 2012 6 CSE 471 - Synchronization

4/17/2012

4

Acquiring a Lock

Atomic exchange instruction: swap a value in memory & a value in a
register as one operation

• set the register to 1

• swap the register value & the lock value in memory

• new register value determines whether got the lock

AcquireLock:

 li R3, #1 /* create lock value

 swap R3, 0(R4) /* exchange register & lock

 bnez R3, AcquireLock /* have to try again */

Other examples

• test & set: tests the value in a memory location & sets it to 1

• fetch & increment/decrement: returns the value of a memory
location +/- 1

• in general, a lock implementation is known as atomic read-modify-
write to a location in memory

Spring 2012 7 CSE 471 - Synchronization

Releasing a Lock

Store a 0 in the lock

Spring 2012 8 CSE 471 - Synchronization

4/17/2012

5

Load-locked & Store Conditional

Performance problem with atomic read-modify-write:

• 2 memory operations in one

• must hold the bus until both operations complete

Pair of instructions appears atomic

• avoids need for uninterruptible memory read & write pair

• load-locked & store-conditional

• load-locked returns the original (lock) value in memory

• if the contents of lock memory has not changed when the store-
conditional is executed, the processor still has the lock

• store-conditional returns a 1 if successful

GetLk: li R3, #1 /* create lock value

 ll R2, 0(R1) /* read lock variable

 ...

 sc R3, 0(R1) /* try to lock it

 beqz R3, GetLk /* cleared if sc failed

 ... (critical section)

Spring 2012 9 CSE 471 - Synchronization

Load-locked & Store Conditional

Implemented with special processor registers: lock-flag register & lock-

address register

• load-locked sets lock-address register to lock’s memory address &

lock-flag register to 1

• store-conditional returns lock-flag register value

• if still 1, then processor has the lock

• if 0, then processor no longer has the lock & has to try again

• why would the lock-flag register be cleared?

• if the lock is written by another processor

• if a context switch or interrupt

Spring 2012 10 CSE 471 - Synchronization

4/17/2012

6

Synchronization APIs

User-level software synchronization library routines constructed with
atomic hardware primitives

• efficient spin locks

• busywaiting until obtain the lock

• contention with atomic exchange causes invalidations (for
the write) & coherency misses (for the rereads)

• avoid if separate reading & testing the lock & updating it

• spinning done in the cache rather than over the bus

getLk: li R2, #1

spinLoop: ll R1, lockVariable

 blbs R1, spinLoop

 sc R2, lockVariable

 beqz R2, getLk

 (critical section)

 st R0, lockVariable

Spring 2012 11 CSE 471 - Synchronization

Synchronization APIs

• blocking locks

• block the thread immediately

• block the thread after a certain number of spins

Spring 2012 12 CSE 471 - Synchronization

4/17/2012

7

Inter-thread Strategy

An example overall synchronization/coherence strategy:

• design cache coherency protocol for little interprocessor contention
for locks (the common case)

• add techniques to avoid performance loss if there is contention for
a lock & still provide low latency if no contention

Spring 2012 13 CSE 471 - Synchronization

Synchronization Strategy

Have a race condition for acquiring a lock when it is unlocked

• O(p2) bus transactions for p contending processors with write-
invalidate

Two techniques to avoid O(p2)

• exponential back-off - software solution

• each processor retries at a different time

• successive retries done an exponentially increasing time later

• queuing locks - hardware solution (could be software)

• each processor spins on a different location (in a queue)

• when a lock is released, only the next processor in the queue
see its lock go “unlocked”

• other processors continue to spin/block

• lock is effectively passed from one processor to the next

• also addresses fairness (locks acquired in FIFO order)

Spring 2012 14 CSE 471 - Synchronization

4/17/2012

8

Trickiness

Writing programs that are both correct and parallel

• Choosing the locking strategy

• Choosing the right locking granularity

• Coarse-grain are simple to get correct, but limit parallelism

• Fine-grain the opposite

• Acquiring & releasing nested locks in the correct order, or deadlock

• Avoiding locks when they aren’t really needed

Spring 2012 15 CSE 471 - Synchronization

Transactional Memory

The idea:

• No locks, just shared data

• Execute critical sections speculatively

• Abort on conflicts

Spring 2012 16 CSE 471 - Synchronization

begin_transaction();

if (accts[id_from].bal >= amt) {

 accts[id_from].bal -= amt;

 accts[id_to].bal += amt; }

end_transaction();

4/17/2012

9

Transactional Memory

begin_transaction :

• Checkpoint the registers

• Track all read addresses

• Buffer all the writes so they’re invisible to other processors

end_transaction :

• Commit the writes to memory, clear bits

Implemented with cache block state,: read & write bits

• Set bits on read or write

• Clear bits on commit

• If any block with read or write bit set is invalidated, abort the

transaction by restoring the checkpoint & re-executing.

Spring 2012 17 CSE 471 - Synchronization

Transactional Memory

+ Has the programming simplicity of coarse-grain locks

• execute transactions speculatively

+ Higher concurrency (parallelism) of fine-grain locks

• abort if a conflict

 only serialized if data is actually write-shared

+ No lock acquisition overhead

Spring 2012 18 CSE 471 - Synchronization

4/17/2012

10

Transactional Memory

Issues:

• What if reads/writes don’t fit in the cache?

• What if the transaction gets swapped out in the middle?

• What if the transaction does a (not-abortable) I/O or syscall?

• How do we automatically “transactionify” existing lock-based

programs?

• Should transactions be implemented in hardware, software or both?

Spring 2012 19 CSE 471 - Synchronization

Important Issues

Red & Green

• role of coherency protocol vs. role of thread synchronization

• critical section

• mutual exclusion

• barrier synchronization

• how locks work

• efficient atomic operations

• another example of snooping

• spinning vs. blocking

• another illustration of trading latency for throughput

• efficient busywaiting

• another use of speculation

• precise interrupts & transactional memory (another roll-back
situation)

Spring 2012 20 CSE 471 - Synchronization

