The WaveScalar Architecture

Steven Swanson Andrew Schwerin Martha Mercaldi
Andrew Petersen Andrew Putnam Ken Michelson
Mark Oskin Susan Eggers
Computer Science & Engineering
University of Washington
{swanson,schwerin,mercaldi,petersen,aputnam,ken,oskin,eggers }@cs.washington.edu

Abstract: tain 7-14 multiply-accumulates per cycle on fine-grain

Silicon technology will continue to provide an exthreaded versions of weII-_known kernels. Finally, we
ponential increase in the availability of raw transis@PPly both styles of threading to equake from spec2000

tors. Effectively translating this resource into applica2"d Speed it up by 9x compared to the serial version.
tion performance, however, is an open challenge tH§gywords: WaveScalar, Dataflow computing, Multi-

conventional superscalar designs will not be able tBreading
meet. We present WaveScalar as a scalable alternative |ntroduction
to conventional designs. WaveScalar is a dataflow in- . .
. gns . If is widely accepted that Moore’s Law will hold for the
struction set and execution model designed for scalable . .
o .next decade. However, although more transistors will be
low-complexity/high-performance processors. Unlike™”. . : . .
. . .. _ayailable, simply scaling up current architectures will
previous dataflow machines, WaveScalar can efficien Ia/ : . .
) . . . not convert them into commensurate increases in per-
provide the sequential semantics imperative Ianguagtes

. : prmance [1]. This resulting gap between the increases
require. To allow programmers to easily express paral-

. In_performance we have come to expect and those that
lelism, WaveScalar supports pthread-style, coarse-gr?ln
arger versions of existing architectures will be able to

multithreading and dataflow-style, fine-grain threadin%[; :)
e : . o eliver will force engineers to search for more scalable
In addition, it permits blending the two styles within an

application or even a single function processor architectures.
' Three problems contribute to this gap: (1) the ever-

To execute WaveScalar programs, we have desigiiedeasing disparity between computation and commu-
a scalable, tile-based processor architecture called thgation performance — fast transistors but slow wires;
WaveCache. As a program executes, the WaveCaghigne increasing cost of circuit complexity, leading to
maps the program’s instructions onto its array of prqynger design times, schedule slips, and more processor
cessing elements (PESs). The instructions remain at t}‘ﬁi[gs; and (3) the decreasing reliability of circuit tech-
processing elements for many invocations, and as mﬁogy, caused by shrinking feature sizes and contin-
working set of instructions changes, the WaveCache {gy scaling of the underlying material characteristics.
moves unused instructions and maps new instructiongtyarticular, modern superscalar processor designs will
their place. The instructions communicate directly withyt scale, because they are built atop a vast infrastruc-
one-another over a scalable, hierarchical on-chip intefyre of slow broadcast networks, associative searches,
connect,_obv_iating the need for long wires and broadcagmmex control logic, and centralized structures.
communication. We propose a new instruction set architecture (ISA),

This paper presents the WaveScalar instruction satlled WaveScalar [2], that addresses these challenges
and evaluates a simulated implementation based on doy-building on the dataflow execution model [3]. The
rent technology. For single-threaded applications, ttdataflow execution model is well-suited to running on
WaveCache achieves performance on par with convardecentralized, scalable processor, because it is inher-
tional processors, but in less area. For coarse-graently decentralized. In this model, instructions execute
threaded applications the WaveCache achieves neaxlgen their inputs are available, and detecting this condi-
linear speedup with up to 64 threads and can susen can be done locally for each instruction. The global

coordination that the von Neumann model relies on, I8A and WaveCache architecture. First, we describe
the form of a program counter, is not required. In addhose aspects of WaveScalar's ISA and the WaveCache
tion, the dataflow model allows programmers and comrchitecture that are required for executing single-
pilers to express parallelism explicitly, instead of relyingpreaded applications, including the wave-ordered mem-
on the underlying hardware (e.g., an out-of-order supery interface. We evaluate the performance of a small,
scalar) to extract it. simulated WaveCache on several single-threaded appli-

WaveScalar exploits these properties of the datafloations. Our data demonstrate that this WaveCache per-
model, and also addresses a long standing deficiefayns comparably to a modern out-of-order superscalar
of dataflow systems. Previous dataflow systems codlesign, but requires onk¢38% as much silicon area.
not efficiently enforce the sequential memory seman-Next, we extend WaveScalar and the WaveCache
tics that imperative languages such as C, C++, and Javaupport conventional pthread-style threading. The
require. Instead they used special, dataflow languaghanges to WaveScalar include light-weight dataflow
that limited their usefulness. A recent ISCA keynote agynchronization primitives and support for multiple, in-
dress [4] noted that if dataflow systems are to becomdependent sequences of wave-ordered memory opera-
viable alternative to the von Neumann status quo, thigyns. The multithreaded WaveCache achieves nearly
must enforce sequentiality on memory operations witlinear speedup on the six Splash2 parallel benchmarks
out severely reducing parallelism among other instrutat we use.
tions. WaveScalar addresses this challenge with a men¥inally, we delve into WaveScalar’s dataflow under-
ory ordering scheme, calledave-ordered memoyyhat pinnings, the advantages they provide, and how pro-
efficiently provides the memory ordering that imperativerams can combine them conventional multi-threading.
languages need. We describe WaveScalar's “unordered” memory inter-

Using this memory ordering scheme, WaveScalaice and show how it combines with fine-grain threading
supports conventional single-threaded and pthread-stgl@eveal substantial parallelism. Fully utilizing these
multithreaded applications. It also efficiently supportschniques requires a custom compiler which is not yet
fine-grain threads that can consist of only a handful @mplete, so we evaluate these two features by using
instructions. Programmers can combine these differ@aihd-coding three common kernels and rewriting part of
thread models in the same program or even in the sameequakebenchmark to use a combination of fine- and
function. Our data show that applying diverse styles earse-grain threading styles. The results demonstrate
threading to a single program can expose significant pdwat these techniques speed up the kernels by between
allelism in code that would otherwise be difficult to fully16 and 240 times anelquakeby a factor of 9 compared
parallelize. to the serial versions.

Exposing parallelism is only the first task. The pro- The rest of this paper is organized as follows. Sec-
cessor must then translate that parallelism into perf@ens 2 and 3 describe the single-threaded WaveScalar
mance. We exploit WaveScalar's decentralized dataflig®A and WaveCache architecture, respectively. Sec-
execution model to design th@/aveCache a scal- tion 4 then evaluates them. Section 5 describes
able, decentralized processor architecture for executivgveScalar's coarse-grain threading facilities and the
WaveScalar programs. The WaveCache has no cendt@inges to the WaveCache that support them. Section 6
processing unit. Instead it consists of a sea of proceggesents WaveScalar's dataflow-based facilities that sup-
ing nodes in a substrate that effectively replaces the cpart fine-grain parallelism and illustrates how one can
tral processor and instruction cache of a conventiog@mbine both threading style to enhance performance.
system. The WaveCache loads instructions from mepinally, Section 7 concludes.
ory and assigns them to processing elements for exe- .
cu>t/ion. The igstructions remain at their processing e?e— Single-threaded WaveScalar
ments for a large number, potentially millions, of invoFhe dataflow model that WaveScalar uses is fundamen-
cations. As the working set of instructions for the applially different than the von Neumann model that dom-
cation changes, the WaveCache evicts unneeded instim&tes conventional designs, but both models accom-
tions and loads the necessary ones into vacant proceish many of the same tasks in order to execute sin-
ing elements. gle threaded programs written in conventional program-

This paper describes and evaluates the WaveScatarg languages. For example, both must determine

2

which instructions to execute and provide a facility faemantics efficiently.
conditional execution; they must pass operands fromAt its heart, the von Neumann model describes exe-
one instruction to one another and they must accession as a linear, centralized process. A single program
memory. counter guides execution and there is always exactly one
For many of these tasks, WaveScalar borrows franstruction that, according to the model, should execute
previous dataflow machines. Its interface to memongxt. This is both a strength and a weakness. On one
however, is unique and is one of its primary contribtrand, it makes control transfer easy, tightly bounds the
tions to dataflow computing. The WaveScalar meramount of state the processor must maintain, and pro-
ory interface provides an efficient method for encogides a simple set of memory semantics. History has
ing memory ordering information in a dataflow modeglso demonstrated that constructing processors based on
enabling efficient execution of programs written in inthe model is feasible (and extremely profitable!). On the
perative programming languages. Most earlier dataflather hand, the model expresses no parallelism. While
machines could not efficiently execute codes writtentine performance of its processors has improved expo-
imperative languages, because they could not easily pentially for over three decades, continued scalability is
force the memory semantics these programs require.uncertain.
To _prowde context for our description, we f_ws&_2 WaveScalar's ISA
describe how the von Neumann model accomplishes
the tasks outlined above and why the von Neumamhe dataflow execution model has no PC to guide in-
model is inherently centralized. Then we describe h@iruction fetch and memory ordering and no register file
WaveScalar's model accomplishes the same goals it &erve as a conduit of data values between dependent
decentralized manner and how WaveScalar's memdggtructions. Instead, it views instructions as nodes in
interface works. WaveScalar's decentralized executi@rtlataflow graph that only execute after they have re-
model provides the basis for the decentralized, genet@ived their input values. Memory operations execute in
purpose hardware architecture in Section 3. the same data-driven fashion, which may result in their
being executed out of the program’s linear order. How-
ever, although the model provides no total ordering of
Von Neumann processors represent programs as a list grogram’s instructions, it does enforce the partial or-
instructions that reside in memory. A program counteers that a program’s dataflow graph defines. Since in-
(PC) selects instructions for execution by stepping fraaividual partial orders are data-independent, they can be
one memory address to the next, causing each instrexecuted in parallel, providing the dataflow model with
tion to execute in turn. Special instructions can modn inherent means of expressing parallelism of arbitrary
ify the PC to implement conditional execution, functiogranularity. In particular, the granularity of parallelism
calls, and other types of control transfer. is determined by the length of a data-dependent path.
In modern von Neumann processors instructioRsr all operations, data values are passed directly from
communicate with one another by writing and readimgyoducer instructions to consumer instructions without
values in the register file. After an instruction writes iatervening accesses to a register file.
value into the register file, all subsequent instructionsDataflow’s advantages are its explicit expression of
that read the value are data dependent on the writingparallelism among dataflow paths and its decentralized
struction. execution model that obviates the need for a program
To access memory, programs issue Load and Stooeinter or any other centralized structure to control
instructions. A key tenet of the von Neumann modeliisstruction execution. However, these advantages do
the set of memory semantics it provides: that loads amot come for free. Control transfer is more expen-
stores occur (or appear to occur) in the order in whiskve in the dataflow model, and the lack of a total or-
the PC fetched them. Enforcing this order is requirelgr on instruction execution makes it difficult to en-
to preserve read-after-write, write-after-write, and writéarce the memory ordering that imperative languages re-
after-read dependences between instructions. Modepiye. WaveScalar handles control using the same tech-
imperative languages, such as C, C++, or Java, providgue as previous dataflow machines (described in Sec-
essentially identical memory semantics and rely on ttien 2.2.2), but overcomes the problem of memory ac-
von Neumann architecture’s ability to implement thosess order with a novel architectural technique called

2.1 The von Neumann model

3

wave-ordered memon2] (described in Section 2.2.5)turn. In Figure 1, once inputd and B are ready, the
Wave-ordered memory essentially creates a “chain” AbbD can fire and produce the left-hand input to the D
dependent memory operations at the architectural lewabe. Likewise, onceC is available, the 8BTRACT
the hardware then guarantees that the operations execaisputes the other input to the\DDE instruction. The
in the order the chain defines. DivIDE then executes and producBs

Below we describe the WaveScalar ISA in detail. The dataflow firing rule is inherently decentralized,
Much of the information is not unique to WaveScalajecause it allows each instruction to act autonomously,
and reflects its dataflow heritage. We present it here {gaiting for inputs to arrive and generating outputs. Por-

completeness and to provide a thorough context for ffighs of the dataflow graph that are not explicitly data-
discussion of memory ordering, which is WaveScalagependent do not communicate at all.

key contribution to dataflow instructions sets. Read-
ers already familiar with dataflow execution could ski&.2.2 Control flow

Sections 2.2.1, 2.2.2, and 2.2.4.]]]
Dataflow’s decentralized execution algorithm makes

2.2.1 Program representation and execution control transfers more difficult to implement. Instead

WaveScalar represents programs as dataflow graghisSteering a single PC through the executable, so
Each node in the graph is an instruction, and the aff§ Processor executes one path instead of the other,
between nodes encode static data dependences (i.e Y{gyeScalar steers values into one part of the dataflow
pendences that are known to exist at compile time) 56&Ph and prevents them from flowing into another. It
tween instructions. Figure 1 shows a simple piece §in @lso use predication to perform both computations
code, its corresponding dataflow graph, and the equi@&-d later discard the results on the wrong path. In both
lent WaveScalar assembly language. cases, the data_lﬂow graph ml_Jst c_ontain a control instruc-
The mapping between the drawn graph and tfian for ea}ch live value, which is the source of some
dataflow assembly language is simple: each line of ¥€rhead in the form of extra static instructions.
sembly represents an instruction, and the arguments t¥/aveScalar usesT&ERinstructions to steer values to
the instructions are dataflow edges. Outputs precedettifecorrect path and instructions for predication. The
', The assembly code resembles RISC-style assePiEER[5] instruction takes an input value and a boolean
bly but differs in two key respects. First, although theutput selector. It directs the input to one of two possi-
dataflow edges syntactically resemble register nam@!§, outputs depending on the selector value, effectively
they do not correspond to a specific architectural e¥ieering data values to the instructions that should re-
tity. Consequently, like pseudo-registers in a compileggive them. Figure 2(b) shows a simple conditional im-
program representation, there can be an arbitrary nupemented with $EERInstructions. $SEERinstructions
ber of them. Second, the order of the instructions doe@respond most directly to traditional branch instruc-
not affect their execution, since they will be executed {i®ns, and they are required for implementing loops.
dataflow fashion. Each instruction does have a unigilemany cases a *&ER instruction can be combined
address, however, used primarily for specifying fun@ith a normal arithmetic operation. For examplep @
tion call targets (see Section 2.2.4). As in assembly |&AND-STEER takes three inputs: a predicate and two
guages for von Neumann machines, we can use lat#igrands, and steers the result depending on the pred-
(e.g.,begin in the figure) to refer to specific instrucicate. WaveScalar provides a steering version for all 1-
tions. We can also perform arithmetic on labels. Fapd 2-input instructions.
instancebegin +1 would be the BTRACT instruc- The ¢ instruction [6] takes two input values and a
tion. boolean selector input and, depending on the selector,
Unlike the PC-driven von Neumann model, executigrasses one of the inputs to its outpgitinstructions are
of the dataflow graph is data-driven. Instructions exanalogous to conditional moves and provide a form of
cute according to thdataflow firing rule which stipu- predication. They are desirable, because they remove
lates that an instruction can fire at any time after valudse selector input from the critical path of some compu-
arrive on all of its inputs. Instructions send the valu¢stions and therefore increase parallelism. They are also
they produce along arcs in the program’s dataflow graphsteful, however, because they discard the unselected
to their consumer instructions, causing them to fire imput. Figure 2(c) shows instructions in action.

4

.label begin

D=(A+B)/(C-2) Add temp 1 « A, B
Sub temp 2 « C, #2
Div D « temp 1, temp 2

(a) (b) (©)

Figure 1: A Simple dataflow fragment: A simple program statement (a), its dataflow graph (b), and the corre-
sponding WaveScalar assembly (c). The order of the WaveScalar assembly statements is unimportant, since they
will be executed in dataflow fashion.

if (A>0)
D=C+B;
else
D=C-E;
F=D+1;

(A) (b) (c)

Figure 2:Implementing control in WaveScalar: An |F-THEN-ELSE construct (a) and equivalent dataflow repre-
sentations. In (b) BEERInstructions (triangles labeled ‘s’) ensure that only one side of the branch executes, while
(c) computes both sides andbanstruction selects the result to use.

2.2.3 Loops and waves on all its inputs!. The combination of a data value

and its tag is called éoken WaveScalar is a dynamic
The STEER instruction may appear to be sufficient fogataflow architecture.

WaveScalar to express loops, since it provides a ba-))) .
sic branching facility. However, in addition to branch- Dynamic dataflow architectures differ in how they

ing, dataflow machines must also distinguish dynanfl@nage and assign tags to values. In WaveScalar
B:; tags are calledvave-numberg2]. We denote a

instances of values from different iterations of a loop. :
Figure 3(a) shows a simple loop that both illustrates tjgaveScalar token with wave-numbéf and value as
problem and WaveScalar's solution. W.v. Instead of assigning differemtave-numbergo
, _ _ different instances of specific instructions (as most dy-

Execution begins when data values arrive at thgmic dataflow machines did), WaveScalar assigns them
ConsTinstructions, which inject zeros into the body o, ¢ompiler-delineated portions of the dataflow graph
the loop, one fosum and one foii (Figure 3(b)). ON ¢4jedwaves Waves are similar to hyperblocks [13], but
each iteration t.hrogghthe Iqop, the left side updatep_ they are more general, since they can contain control-
and the right side incremenitsand checks whether it isqq,y joins and can have more than one entrance. They
less than 5. For the first 5 iterations£ 0...4), IS cannot contain loops. Figure 3(c) shows the example
true and the SEERinstructions steer the new values fof o givided into waves (as shown by the dotted lines).
sumandi back into the loop. On the last iteratiqnis At the top of each wave is a set of Al -ADVANCE
false, and the final value aum leaves the loop via thejniryctions (the small diamonds), each of which incre-

sum.out edge. Since is dead after the loop, the falsgnents the wave number of the value that passes through
output of the right-side BEER instruction produces noj;

output.

. . Assume the code before the loop is wave number O.
The problem arises because the dataflow execu . .
) hen the code executes, the tw@IIST instructions
model makes no guarantee about how long it takes a datﬁl
.) Will'produce0.0 (wave number 0, value 0). The A¥E-
value to flow along a given dataflow arc.sifim_first . : . ’
.) . . ADVANCE instructions will take these as input and each
takes a long time to reach thedA& instruction, the right _ . .)
_ _ ill output 1.0, which will propagate through the body
side portion of the dataflow graph could run ahead of t .
) . . . of the loop as before. At the end of the loop, the right-
left side, generating multiple values @nbackedge

. ; side STEERInstruction will producel.1 and pass it back
andp. How would the /oD and SEER instructions to the WAVE-ADVANCE at the top of its side of the loop,

on the left know which of these values to use? In th'snich will then produce2.1. A similar process takes

p?;tlﬁiur:artﬁasle, the Cn?n?pt”?r ck;)utlf[jhisoilvitr:e Is\:oblem ¥ace on the left side of the graph. After 5 iterations the
unrotiing the foop completely, but this 1S not alWays POy greer instruction produces the final value sxfim:

sible or wise. 5.10, which flows directly into the WWE-ADVANCE at
Previous dataflow machines provided one of two sgre beginning of the follow-on wave. With the Akk-
lutions. In the firststatic dataflow3, 7], only one value ApvaNce instructions in place, the right side can run
is allowed on each arc at any time. In a static dataflgead safely, since instructions will only fire when the
system, the dataflow graph as shown works fine. Th@ve numbers in the operand tags match. More gen-
processor would use back-pressure to prevent the-C erally, waves numbers allow instructions from different
PARE and INCREMENT instructions from producing awave instances, in this case iterations, to execute simul-
new value before the old values had been consum@gﬁeougy_
While this restriction resolves the ambiguity between . .
different value instances, it also reduces parallelism }Hn addition to allowing WaveScalar to ex_t ract parfil—
preventing multiple iterations of a loop from executin% Ism, wave-n.umbers ?ISO play a key role in enforcing
simultaneously and makes recursion difficult to supp emory ordering (Section 2.2.5).

A second modeldynamic datafloy8, 9, 10, 11, 12],
tags each data value with an identifier and allows mu . _ o where the |
tiple values to wait at the input to an instruction. The e execution model does not specify where the data values are
stored or how matching takes place. Efficiently storing and matching

dataflow firing rule is modified so that an instructioput tokens is a key challenge in dynamic dataflow architecture, and
fires only when tokens with matching tags are availat8ection 3 discusses it.

6

trigger

N

[const#0) (_const#0)

sum_first i_first

y
sum_backedge

p

i_backedge

sum_out

(a) (b)
Figure 3:Loops in WaveScalar: A naive, slightly broken loop implementation (b), and the correct WaveScalar
implementation (c).

2.2.4 Function calls LANDING-PAD instruction, as its name suggests, pro-
vides a target for a data value sent IRECT-SEND.

Function calls on a von Neumann processor are fai% call the function, the caller uses threebDIRECT-

simple — the caller saves “caller saved” registers, pusféeEg\lD instructions: two for the argumentsand 3 and

function arguments and the return address onto the Stgﬁg for the return address, which is the address of the

(or stores them in specific registers), and then uses f . :
. . . return LANDING-PAD (labelret in the figure). The
jump instruction to set the PC to the address of the tfe— (gure)

inning of the called function, triggering its execution NDIRECT-SEND instructions use the address fb
9 9 » I1ggering ‘and their immediate values to compute the addresses of

Being a dataflow architecture, WaveScalar must f(ﬁlfstructions they will send their values to.
low a slightly different convention. Since it has no reg- \yihen the values arrive 460 . the LANDING-PAD

isters, it does not ”?e_d to preserve register Values'inthructions pass them to AWE-ADVANCE instructions
must, however, expllmtly pass arguments qnd a reuﬂﬂ?ﬂt, in turn, forward them into the function body (the
address to the function and trigger its execution. Passg&glee immediately begins a new wave). Once the func-

arguments creates'a dgta deperydence between the Ct?c!lr?ris finished, perhaps having executed many waves,
and the callee. Forindirect functions, these dependenges | ,cas 3 single NDIRECT-SEND to return the re-

are not statically known and therefore the static dataflQyyy; o the caller's IANDING -PAD instruction. After the

graph of the application does not contain them. 'nSteﬂ%ction call, the caller starts a new wave using aas-
WaveScalar provides a mechanism to send a data VaALbQ/ANCE

to an instruction at a computed address. The instruction _
that allows this is calledNDIRECT-SEND. 2.2.5 Memory ordering

INDIRECT-SEND takes as input the data value to senginforcing imperative languages memory semantics is
a base address for the destination instruction (usuallgrge of the key challenges that have prevented dataflow
label), and the offset from that base (as an immediatgjocessing from becoming a viable alternative to the von
For instance, if the base address is 0x1000, and the aféumann model. Since dataflow ISAs only enforce the
setis 4, NDIRECT-SEND sends the data value to the instatic data dependences in a program’s dataflow graph,
struction at 0x1004. they have no mechanism that ensures that memory op-

Figures 4 contains the dataflow graph for a smaltations occur in program order. Figure 5 shows a
function and a call site. Dashed lines in the graphs refataflow graph that demonstrates the dataflow memory
resent the dependences that exist only at run time. Tndering problem. In the graph the Load must execute

7

(_const #foo) (_ const #ret) A B

((ind_send#0) (ind_send#1) (ind_send #2)

int foo(int A, int B) { TTmmmsmmomoo—--ooommoooooeo N . .
return A + B;

a ‘A L'\
foo: (landing_pad) (landing_pad) (landing_pad)
A

}

result = foo(nB)s . @
i Tl
N h B

ret:
9P return_addr

.
N
S
~o /
RN !

result

(a) (b)

Figure 4: A function call: The dataflow graph (b) for a call to a simple function (a). The left-hand side of the
dataflow graph usesNDIRECT-SEND instructions to call functiofioo on the right. The dashed lines show data
dependences that WaveScalar must resolve at runtime. The immediate values on theND@Rati-SEND
instructions are offsets from the first instructiorf@o .

after the Store to ensure correct execution should the two

memory addresses be identical. However, the dataflow

graph does not express this implicit dependence between

the two instructions (the dashed line). WaveScalar must

provide an efficient mechanism to encode this implicit

dependence in order to support imperative languages.
Wave-ordered memory solves the dataflow memory

ordering problem, using the waves defined in Sec-

tion 2.2.3. Within each wave, the compiler annotates

memory access instructions to encode the ordering con- Ali+k] = X;

straints between them. Since wave numbers increase a _ Al

the program executes, they provide an ordering of the ¥ = il [+] 4[Load]

executing waves. Taken together, the coarse-grain order

ing between waves (via their wave numbers), combined

with the fine-grain ordering within each wave, provides

a total order on all the memory operations in the pro-

gram. v
This section presents wave-ordered memory. Once y

we have more fully described waves and dlscussedﬁ_gure 5: Program order: The dashed line represents

annotation scheme for operations within a wave, we o .
. . . n implicit, potential data dependence between the Store
scribe how the annotations provide the necessary orc?er-
) . :) : nd Load instructions that conventional dataflow in-
ing. Then we briefly discuss an alternative solution Q ucti - . :
. struction sets have difficulty expressing. Without the
the dataflow memory ordering problem. . .
dependence, the dataflow graph provides no ordering re-
Wave-ordering Annotations Wave-ordering annota-lationship between the memory operations.
tions order the memory operations within a single wave.
The annotations must guarantee two properties. First,

they must ensure that the memory operations within a

8

Sequence # number is unknown at compile time, because control
may take one of two paths. In these cases a 'wildcard’

‘ symbol, '?’, takes the place of the successor (predeces-
Load <. 1> sor) number. The left-hand portion of Figure 7 shows

Store <0 R 1 @A/ Successor a simplelF-THEN-ELSE control flow graph that demon-
strates how the wildcard is applied; the right-hand por-
Load §D 2,.> . . .
tion depicts how memory operations on the taken path
are sequenced, described below.

Intuitively, the annotations allow the memory system
Figure 6: Simple wave-ordered annotations: The to “chain” memory operations together. When the com-
three memory operations must execute in the orgsier generates and annotates a wave, there are many po-
shown. The predecessor, sequence, and successor memtial chains of operations through the wave, but only
bers encode the ordering constraints. The '’ symbalse chain (i.e., one control path) executes each time the
indicate that operations 0 and 2 are the first and last ogve executes (i.e., during one dynamic instance of the
erations in the wave. wave). For instance, the right side of Figure 7 shows the

sequence of operations along one path through the code
wave execute in the correct order. Wave-ordered megrthe left. From one operation to the next, either the
ory achieves this by giving each memory operation gredecessor and sequence numbers or the successor and
a wave asequence numbeBequence numbers increasgaquence numbers match (the ovals in the figure).
on all paths through a wave, ensuring that if one memory,, orqer for the chaining to be successful, the com-

operation has alarger sequence number than anotherpiae st ensure that there is a complete chain of mem-
one with the larger number comes later in program Qjy, gperations along every path through a wave. The
der. Figure 6 shows a very simple series of memol}ain must begin with an operation whose sequence

operations and their annotations. The sequence numher . i< 9 and end with successor number ‘. indi-
is the second of the three numbers in angle braCketS'cating there is NO SUCCesSSor ’

5‘?00”‘3" wave-ordereq memory _mUSt detect when a||t is easy to enforce this condition on the beginning
previous memory operations that will execute have dogﬁd the end of the chain of operations, but ensuring

S0 In. the absence of branches, Fh's o!etectlon IS SEt all possible changes through the wave are complete
ple: since all the memory operations in a wave wi

I h ol o 1 more difficult. Figure 8(a) shows an example. The
eventually execute, the memory system simply waits Bfanch and join mean that the instruction 0's successor

memory operations with all lower sequence numbersa{ﬂd instructions 2’s predecessor are both ‘?’. As aresult,

complete. Control flow complicates this, because it le memory system cannot construct the required chain

lows some of the memory operations to execute (th Stween operations 0 and 2, if control takes the right-

on the taken paths) while others do not (those on tﬁgnd path. To create a chain, the compiler inserts a spe-

non-taken paths). To accommodate this, Wave-ordeE% MEMORY-NOP instruction between 0 and 2 on the
memory must distinguish between operations that ta::ggam'hand path (Figure 8(b)). The &MORY-NOP has

long time to fire and those that never will. To ensure t effect on memory but does send a request to the mem-
all the memory operations on the correct path are exey

;) interface to provide the missing link in the chain.
cuted, each memory operation also carries thg Sequeﬂgaing MEMORY-NOPs introduces a small amount of
number of its previous and subsequent opera_ltlons N PO rhead, usually less than 3%.
gram order. Figure 6 includes these annotations as well.

The predecessor number is the first number between@reering Rules We can now demonstrate how
brackets, and the successor number is the last. FornWaveScalar use wave numbers and the annotations de-
stance, the Store in the figure is preceded by a Load wgtribed above to construct a total ordering over all mem-
sequence number 0 and followed by the Load with ssry operations in a program. Figure 7 shows a simple
quence number 2, so its annotations are), 1,2 >. example. Control takes the right-hand path resulting
The " symbols indicate that there is no predecessoriafthree memory operations executing. At right, ovals
operation 0 and no successor of operation 2. show the links between the three operations that form

At branch (join) points the successor (predecesstrgm into a chain. The general rule is that a link ex-

Predecessor

9

//, \
y N
7 Load </@7>]
________ Ko \.
; \ r—- _—) -
| . .
i [Store <0,1,3>] ! I [Store <0,2,3>]—1_/>[Store @/%] .~ Matches forming
I I | a chain
________ N —_—————_—_—-—
\ 7
y Load <?@/]

/7
N /
I'“‘“""“
| [Load <?7,3,.>

Figure 7:Wave-ordering and control: Dashed boxes and lines denote basic blocks and control paths. The right
hand side of the figure shows the instructions that actually execute when control takes the right-hand path (bold
lines and boxes) and the matches between their annotations that define program order.

! | ! |

E[Load<®7>]: E[Load<®7>]:

L___T ________ I____: L___T ________ ____:

// : // \\
/ ! / \
/// i /// \\\

T _’_ _______ | : T _’_ _______ [t ________ |
| | | |
E[Stor'e<@,12>]: | i[Stor‘e<®13>]{i[Nop<®23>]:
E— — : : E— — I — — :

\\ : \\ //

\ | \ /
\\\ i \\\ /,/

R W S R W Y

! | ! |

E[Load<72 >]: E[Load<73>]:

| I | I

(a) (b)

Figure 8:Resolving ambiguity: In (a), the chaining is impossible along the right-side path. In (b), the addition of
a MEMORY-NoOP allows chaining.

10

ists between two operations if the successor number of

. . ripple number
the first operation matches the sequence number of thei | bp

second or the sequence number of the first matches tha [Store <_"‘6\ @ |
predecessor number of the second. | ‘g\, N 1'

Since the annotations only provide ordering with 1 _ Y “.,‘\f : -, Ripple-based
a wave, WaveScalar uses wave numbers to order the, | | oad <0,$\,2\>-‘0\‘. ! links
waves themselves. The WaveScalar processor must er; - ‘.\ \“: g
sure that all the operations from previous waves com-;| _ \ _ !
plete before the operations in a subsequent wave can by | | oad <1 %(ﬁ%\ol: !
applied to memory. Combining the global inter-wave | - =) !
ordering with the local intra-wave ordering provides a L / /‘11
total ordering on all operations in the program. ' | Store <2[3¢1)>_3 i

. J
Expressing parallelism The basic version of wave- | [/4: .
ordered memory described above can be easily extende, (N | > Normal links
to express parallelism between memory operations, al-; | Load <3i4/é)>'3) '
lowing consecutive Loads to execute in parallel or out- | / /4 -
of-order. L (4‘&/ 1|
The annotations and rules define a linear ordering of | {_ Store <49.>.5 J |

memory operations, ignoring potential parallelism be- '- - - - - - - ————-—- 1
tween Loads. Wave-ordered memory can express thigure 9: Simple ripples: A single wave containing a
parallelism by providing a fourth annotation called@ single basic block. The ripple annotations allow loads
ple number The ripple number of a Store is equal to it$ and 2 to execute in either order or in parallel, while
sequence number. A Load’s ripple number points to tthe stores must wait for all previous loads and stores to
Store that most immediately precedes it. To compute tt@mmplete. Ovals depict the links formed between opera-
ripple number for a Load, the compiler collects the settidns.
all Stores that precede the Load on any path through the
wave. The Load’s ripple number is the maximum of the
Stores’ sequence numbers. Figure 9 shows a sequenc
of Load and Store operations with all four annotations.

To accommodate ripples in the ordering rules we al- b _-___
low a Load to execute if it is next in the chain operations 7 N
(as before)pr if the ripple number of the Load is less ‘ >
than or equal to the sequence number of a previously:’
executed operation (a Load or a Store)eiWbRY-NOPS
are treated like Loads.

Figure 9 shows the two different types of links that

e
(V4]
t
o
3
]
A
S
[
\%
S

[Stor‘e <1,2,3>.2] [Load <1,4,5>.0]

[Load <2,3,7>.2] [Load <4,5,6>.0]

. . . N———————— |
can allow an operatlon. to fire. The.solld oval be_twe_en \ ! [Load <5,6,7>.0]
the bottom four operations are similar to those in Fig- %\ e —— !
ure 7. The top two dashed ovals depict ripple-based \ ,/r
links that allow the two Loads to execute in parallel. N

. . - N D S
Figure 10 contains a more sophisticated example. If i !
control takes the right-side branch, Loads 1 and 4-6 can ! [Load <?7,7,.>.2] i

execute in parallel once Store 0 has executed, becaus. ~ “----omommo - !

they all have ripple numbers of 0. Load 7 must waiigure 10:Ripples and control: Branches make ripple
for one of Loads 4-6 execute, because the ripple nubehavior more complicated. If control takes the right-
ber of operation 7 is 2 and Loads 4-6 all have sequer@nd path, most of loads (1, and 4-6) can execute in any
numbers greater than 2. If control takes the left brandrder, but load 7 must wait for an operation with a se-
Loads 3 and 7 can execute as soon as Store 2 has guence number greater than 2.

11

cuted. 3 A WaveCache architecture for single-threaded
programs

2.2.6 Other approaches _ .
WaveScalar's overall goal is to enable an architecture

Wave-ordered memory is not the only way to provide thieat avoids the scaling problems described in the in-
required memory ordering. Researchers have proposeduction. With the decentralized WaveScalar ISA in
an alternative scheme that makes implicit memory deand, our task is to develop a decentralized, scalable ar-
pendences explicit by adding a dataflow edge betweashitecture to match. In addition to scaling challenges,
each memory operation and the next [14, 15]. Whilbe WaveCache also must address additional challenges
this “token-passing” scheme is simple, it does not papecific to WaveScalar. The WaveCache must efficiently
form as well as wave-ordered memory; our experimermsplement the dataflow firing rule and provide storage
have found that wave-ordered memory expresses twioe multiple (perhaps many) instances of data values
as much memory parallelism as token passing [16]. with different tags. It must also provide an efficient

Despite this, token-passing is very useful in sonf@rdware implementation of wave-ordered memory.
situations, because it gives the programmer or com-This section describes a tile-based WaveScalar archi-
piler complete control over memory ordering. If verfecture, called th#&vaveCachgthat addresses these chal-
good memory aliasing is available, the programmienges. The WaveCache comprises everything, except
or compiler can express parallelism directly by judimain memory, required to run a WaveScalar program.
ciously placing dependences only between those mdtrsontains a scalable grid of simple, identical dataflow
ory operations that must actually execute sequentiaflyocessing elements that are organized hierarchically to
WaveScalar provides a simple token-passing facility fetgduce operand communication costs. Each level of

just this purpose (Section 6). the hierarchy uses a separate communication structure:
high-bandwidth, low-latency systems for local commu-
2.3 Discussion nication, and slower, narrower communication mecha-

)))) . nisms for long distance communication.
The WaveScalar instruction set this section describes |§\
s we will show, the resulting architecture directly

sufficient to execute single-threaded applications writ- . . .
g Pp addresses two of the challenges we outlined in the intro-

ten in conventional imperative programming languages. . .) .
b prog g 'anguag dsuctlon. First, the WaveCache contains no long wires.

The instruction set is slightly more complex than a cop- . .)
) ghty P I particular, as the size of the WaveCache increases, the
ventional RISC ISA, but we have not found the com- ,
e . length of the longest wires do not. Second, the Wave-
plexity difficult for the programmer or the compiler ta . .) .
handle Cache architecture scales easily from small designs suit-
' _ ~able for executing a single thread to much larger designs
In return for the complexity, WaveScalar providegyjted to multithreaded workloads (See Section 5). The
three significant benefits. larger designs contain more tiles, but the tile structure,
First, wave-ordered memory allows WaveScalar énd therefore, the overall design complexity does not
efficiently provide the semantics that imperative laghange. The final challenge mentioned in the introduc-
guages require and to express parallelism amdiwgh, defect and fault tolerance, is the subject of ongo-
Load operations. Second, WaveScalar can exprggpresearch. The WaveCache’s decentralized, uniform
instruction-level parallelism explicitly, while still main-structure suggests that it would be easy to disable faulty

taining these conventional memory semantics. Thibmponents to tolerate manufacturing defects.
WaveScalar's execution model is distributed. Only in-\ve begin by summarizing the WaveCache’s design
structions that must pass each other data communicgigy operation at a high level in Section 3.1. Next, Sec-
There is no centralized control point. tions 3.2 to 3.6 provide a more detailed description of

In the next section we describe a microarchitectute major components and how they interact. Section 3.7
that implements the WaveScalar ISA. We find that, describes a synthesizable RTL model that we use, in
addition to increasing instruction-level parallelism, th@ombination with simulation studies, to provide the spe-
WaveScalar instruction set allows the microarchitectuiic architectural parameters for the WaveCache we de-
to be substantially simpler than a modern, out-of-ordseribe. Section 4 evaluates the design in terms of perfor-
superscalar. mance and the amount of area it requires.

12

PE

A B

t Net- ‘> /
V I | Figure 12:Mapping instruction into the WaveCache:

The loop in Figure 3(c) mapped onto two WaveCache
domains. Each large square is a processing element.

|E|
©“

T

L

o]

©
18180

2
'I
2

L2

L2

1 moniker.

Instructions are mapped to and placed in PEs dynami-
cally as a program executes. The mapping algorithm has
two often conflicting goals: to place dependent instruc-
tions near each other (e.g., in the same PE) to minimize
producer-consumer operand latency, and to spread in-
Several recently proposed architectures, including #€pendent instructions out across several PEs to exploit
WaveCache, take a tile-based approach to addresgiagallelism. Figure 12 illustrates how the WaveScalar
the scaling problems outlined in the introduction [1'hrogram in Figure 3(c) can be mapped into two domains
18, 19, 20, 21, 15]. Instead of designing a monolithjg the WaveCache. To minimize operand latency, the
core that comprises the entire die, tiled processors coggfire loop body has been placed in a single domain.
the die with hundreds or thousands of identical tiles, A processing element’s chief responsibility is to im-
each of which is a complete, though simple, procesiement the dataflow firing rule and execute instructions.
ing unit. Since they are less complex than the moneach PE contains a functional unit, specialized memo-
lithic core and are replicated across the die, tiles mqfgs to hold operands, and logic to control instruction
quickly amortize design and verification costs. Tiled agxecution and communication. It also contains buffering
chitectures also generally compute under decentralizgflj storage for several different static instructions. A PE
control, contributing to shorter wire lengths. Fina”)has a fi\/e-stage pipe”ne, with bypass networks that al-
they can be designed to tolerate manufacturing defeigl§ back-to-back execution of dependent instructions at
in some portion of the tiles. the same PE. Two aspects of the design warrant special

In the WaveCache, each tile is calleclaster (Fig- notice. First, it avoids a large, centralized, associative
ure 11). A cluster contains four identicdbmains each tag matching store found on some previous dataflow ma-
with eight identical processing elements (PEs). In achines [9]. Second, although PEs dynamically schedule
dition, each cluster has a four-banked L1 data cackgecution, the scheduling hardware is dramatically sim-
wave-ordered memory interface hardware, and a ngfier than a conventional dynamically scheduled proces-
work switch for communicating with adjacent clusterssor. Section 3.2 describes the PE design in more detail.

From the programmer’s perspective, every static in-To reduce communication costs within the grid, PEs
struction in a WaveScalar binary has a dedicated peve organized hierarchically along with their communi-
cessing element. Clearly, building an array of clusteration infrastructure (Figure 11). They are first coupled
large enough to give each instruction in an entire apto pods PEs within a pod snoop each others’ ALU
plication its own PE is impractical and wasteful, so, inypass networks and share instruction scheduling infor-
practice, we dynamically bind multiple instructions to mation, and therefore achieve the same back-to-back ex-
fixed number of PEs, each of which can hold up to &tution of dependent instructions as a single PE. The
instructions. Then, as the working set of the applicatipods are further grouped inttomains within a domain,
changes, the WaveCache replaces unneeded instructiRias communicate over a set of pipelined buses. The four
with newly activated ones. In essence, the BBshe domains in a cluster communicate over a local switch.
the working set of the application, hence the WaveCadhgethe top level, clusters communicate over an on-chip

Figure 11: The WaveCache: The hierarchical organi-
zation of the microarchitecture of the WaveCache.

3.1 WaveCache architecture overview

13

interconnect built from the network switches in the clusn the number of dynamic instances of a static instruc-
ters. tion that may reside in the matching table, waiting for
PEs access memory by sending requests to the mémut operands to arrive. To address this challenge, the
ory interface in their local cluster. If possible, the lomatching table is implemented as a specialized cache for
cal L1 cache provides the data. Otherwise, it initiatadarger in-memory matching table, a common dataflow
a conventional cache coherence request to retrieve téghnique [9, 8].
data from the L2 cache (located around the edge of thdhe matching table is associated with a second,
array of clusters, along with the coherence directory) &mallertracker board which determines when an in-
the L1 cache that currently owns the data. struction has a complete set of inputs, and is therefore
A single cluster, combined with an L2 cache angady to execute. When this occurs, the instruction
traditional main memory, is sufficient to run anynoves into the scheduling queue.

WaveScalar program, albeit with a possibly high WaveyspatcH: The PE selects an instruction from the
Cache miss rate as instructions are swapped in and OLgéHedu"ng queue, reads its operands from the matching
the small number of available PEs. To build larger aighle and forwards them toxEcUTE. If the destination
higher performing machines, multiple clusters are cogy the dispatched instruction is local, it speculatively is-

nected by an on-(?hip netyvork. A traditional' directo%—ues the consumer instruction to the scheduling queue,
based protocol with multiple readers and single Writghabling its execution on the next cycle.

maintains cache coherence.)
EXECUTE: In most cases EECUTE executes an in-

3.2 The PE struction and sends its results tay@uUT, which broad-

At a high level, the structure of a PE pipeline resembl€&Sts it over the bypass network. However, there are
a conventional five-stage, dynamically scheduled exe&{f© cases in which execution will not occur. First, if an
tion pipeline. The biggest difference between the twol§Struction was dispatched speculatively and one of its
that the PE’s execution is entirely data-driven. Instead@f€rands has notyetarrived, the instruction is squashed.
executing instructions provided by a program counter, 38¢0nd, if @TPUT s full, EXECUTE stalls until space
you find on von Neumann machines, values (i.e., tokeR§FOMes available.
arrive at a PE destined for a particular instruction. TI®@uTpPuUT: Instruction outputs are sent via the output
arrival of all of an instruction’s input values triggers itpus to their consumer instructions, either at this PE or a
execution — the essence of dataflow execution. remote PE. The output buffer broadcasts the value on the
Our main goal in designing the PE was to meet oBE’s broadcast bus. In the common case, the consumer
cycle-time goal while still allowing dependent instrud?E within that domain accepts the value immediately. It
tions to execute on consecutive cycles. Pipelining wiaspossible, however, that the consumer cannot handle
relatively simple. Back-to-back execution, howevethe value that cycle and will reject it. The round-trip to
was the source of significant complexity. send the value and receive atWNACK reply takes
The PE’s pipeline stagers are: four cycles. Rather than have the data value occupy the

. . output register for that period, the PE assumes it will
INPUT: Operand messages arrive at the PE eit erp g P

. . € accepted, moving it into its 4-entrgject buffer and
from another PE or from itself (via the ALU bypass net- X 9 rs])
: . nserts a new value into the output buffer on the next
work). The PE may reject messages if too many arrive . . o
. . cycle. If an operand ends up being rejected, itis fed back
in one cycle; the senders will then retry on a later cycl . T
Ihto the output queue to be sent again to the destinations
MATCH: After they leave NPUT, operands enter thethat rejected it. When all the receivers have accepted the
matching table where tag matching occurs. Costvalue, the reject buffer discards it.
effective matching is essential to an efficient dataflowFigure 13 illustrates how instructions from a sim-
design and has historically been an impediment to mgie dataflow graph (on the left side of the figure) flow
effective dataflow execution [9]. The key challenge itrough the WaveCache pipeline. It also illustrates how
designing the WaveCache matching table was emulatthg bypass network allows instructions to execute on
a potentially infinite table with a much smaller physeonsecutive cycles. In the diagramy,[n] is the nth
cal structure. This problem arises, because WaveScalaut to instructionX. Five consecutive cycles are de-

is a dynamic dataflow architecture, and places no linpicted; before the first of these, one input for each of in-

14

structionsA and B has arrived and reside in the matcloethers bypass networks, the rest of their hardware re-
ing table. The “clouds” in the dataflow graph represemtains partitioned, i.e., they have separate matching ta-
operands that were computed by instructions at otlides, scheduling and output queues, etc.

processing elements and have arrived via the input netThe decision to integrate pairs of PEs together is a re-

work. sponse to two competing concerns: we wanted the clock
Cycle 0: (at leftin Figure 13) Operand 0] arrives and cycle to be shorand instruction-to-instruction commu-
INPUT accepts it. nication to take as few cycles as possible. To reach our

Cycle 1: MATCH writes A[0] into the matching table cycle-time goal, the PE and the intra-domain intercon-
and, because both its inputs are present, placesto nect (described next) had to be pipelined. This increased
the scheduling queue. average communication latency and reduced perfor-
Cycle 2: DisPATCH choosesA for execution and readsmance significantly. Allowing pairs of PEs to commu-
its operands from the matching table. At the same tinféicate quickly brought the average latency back down
it recognizes thatl’s output is destined foB. In prepa- Without significantly impacting cycle time. Tightly in-
ration for this producer-consumer handdifjs inserted tegrating more PEs would increase complexity signif-
into the scheduling queue. icantly, and our data showed that the gains in perfor-
Cycle 3: DispATCH readsB[0] from the matching ta- mance were small.

ble. EXEcUTE computes the result of, which becomes 3.3.2 The intra-domain interconnect

BJ[1].

Cycle 4: EXEcCUTE computes the result of instructio
B, usingB|[0] from DispATCHandB[1] from the bypass

nPEs communicate with PEs in other pods over an intra-
domain interconnect. In addition to the eight PEs in
the domain, the intra-domain interconnect also connects

network.
Cvele 5 (ot sh 5 il 4B Itt two pseudo-PEghat serve as gateways to the memory
in};irjctic()rr:% shown): OuTPUT will send B's result to system (the MM pseudo-PE) and the other PEs on the

o , chip (the NeT pseudo-PE). The pseudo-PEs’ interface to
The logic in MATCH and DSPATCHis the mOSt COM- 4,4 jnira-domain network is identical to a normal PE's.
plex part of the entire WaveCache architecture, and moS{. nira_domain interconnect is broadcast-based.
of it is devoted to allowing back-to-back execution gty of the eight PEs has a dedicated result bus that
dependent instructions while achieving our cycle tim& jes 4 single data result to the other PEs in its do-

goal. main. Each pseudo-PE also has a dedicated output
3.3 The WaveCache interconnect bus. PEs and pseudo-PEs communicate over the intra-
The previous section described the execution resou\?&%e?:(am network using a garden varietg /NACK net-
of the WaveCache, the PE. This section will detail how™

PEs on the same chip communicate. PEs send a&m@3 The intra-cluster interconnect

receive data using a hierarchical, on-chip interconng¢{e intra-cluster interconnect provides communication
(Figure 14). There are four levels in this hierarchyetween the four domains’ BN pseudo-PEs. It also

intra-pod, intra-domain, intra-cluster and inter-clustqises a &Ak/NACK network similar to that of the intra-
While the purpose of each network is the same — traggmain interconnect.

mission (.)f mstructlo_n qperands and memory _/aluess'—&4 The inter-cluster interconnect

their designs vary significantly. We will describe the

salient features of these networks in the next four suble inter-cluster interconnect is responsible for all long-
sections. distance communication in the WaveCache. This in-
cludes operands traveling between PEs in distant clus-
ters and coherence traffic for the L1 caches.

The first level of interconnect, the intra-pod intercon- Each cluster contains an inter-cluster network switch,
nect, enables two PEs to share scheduling hints aath of which routes messages between six input/output
computed results. Merging a pair of PEs into a pgubrts: four of the ports lead to the network switches in
consequently provides lower latency communication ltee four cardinal directions, one is shared among the
tween them than using the intra-domain interconndotr domains’ NeT pseudo-PEs, and one is dedicated
(described below). Although PEs in a pod snoop eaichthe store buffer and L1 data cache.

3.3.1 PEsinaPod

15

O

g AT @ R T A
= 3 —y
= B[0] Neal B[0] Nl BIO] M N B
£ é
A) ‘g A B
a ——]
0] AM] |-} -+--{ BIO] -t R -t
B) o Al0] Al] 80l
3
(53
i)
Bl1]
@ -1+ [BOI=ALOI+ATT] |- -1 Z[0] -
5
=
=3
o
Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Figure 13:The flow of operands through the PE pipeline and forwarding networks:The figure is described in
detail in the text.

pod bypassing intra-domain _
pod PUTEER\ TErTe interconnect _mtra-cluster
\>| PE N PE | | PE H PE |f interconnect
Mem i ST o Net
pseudo PE pseudo PE
|PE HPE| |PEH PE|
|PE HPE| |PEHPE|
Mem Net
pseudo PE pseudo PE
StoreBuffer | PE H PE | | PE H PE | Swi | I—ISOUth
D$ witch
l[PEHPE| [PEHPE] T—| East
Mem Net
pseudo PE pseudo PE
|PE HPE| |PEH PE|
"""""" eltee] Teelteel]
Mem Net
\ Lpseudo PE pseudo PE | : .
oman ——._ [PEHPE] [PEHpE] 0 merduste

switch

Figure 14:The cluster interconnects:A high-level picture of a cluster illustrating the interconnect organization.

16

Each input/output port supports the transmission ofMEMORY-INPUT accepts up to four new memory re-
up to two operands. Its routing follows a simple prajuests per cycle. It writes the address, operation and
tocol: the current buffer storage state at each switchdasta (if available in the case of Stores) into the ordering
sent to the adjacent switches, which receive this inféable at the indexeq(R). If succ(R) is defined (i.e., not
mation a clock cycle later. Adjacent switches only serfdl), the entry in the next table at locatieaq(R) is up-
information if the receiver is guaranteed to have spacdated tosucc(R). If pred(R) is defined, the entry in the

The inter-cluster switch provides two virtual channef®gxt table at locatiopred(R) is set toseq(R).
that the interconnect uses to prevent deadlock [22]. EactM EMORY-SCHEDULE maintains the issued register,
output port contains two 8-entry output queues (one fohich points to the next memory operations to be
each virtual network). In some cases, a message ndggpatched to the data cache. It uses this register
have two possible directions (e.g., North and West if its read four entries from the next and ordering ta-
ultimate destination is to the northwest). In these casdss. If any memory ordering links can be formed
the router randomly selects which way to route the mgse., next table entries are not empty), the memory
sage. operations are dispatched toEMORY-OUTPUT and
the issued register is advanced. The store buffer sup-
ports the decoupling of store-data from store-addresses.
The hardware support for wave-ordered memory liesThis is done with a hardware structure callegar-
the WaveCache's store buffers. The store buffers, aiw store queuedescribed below. The salient point for
per cluster, are responsible for implementing the wawdEmMoRY-SCHEDULE, however, is that Stores are sent
ordered memory interface that guarantees correct megyMeMORY-OUTPUT even if their data has not yet ar-
ory ordering. To access memory, processing elemeried.
send requests to their local store buffer via theNM Ppartial store queues take advantage of the fact that
pseudo-PE in their domain. The store buffer will ektore addresses can arrive significantly before their data.
ther process the request or direct it to another buffer Vigthese cases, a partial store queue stores all operations
the inter-cluster interconnect. All memory requests f@s the same address. These operations must wait for the
a singledynamicinstance of a wave (for example, an itdata to arrive, but other operations may proceed. When
eration of an inner loop), including requests from botRe data finally arrives all, the operations in the partial
local and remote processing elements, are managedtfeye queue can be applied in quick succession. The
the same store buffer. store buffer contains two partial store queues.

To simplify the description of the store buffer’s op- MemoRry-OuTPUT reads and processes dispatched
eration, we denotered(R), seq(R), andsucc(R) as memory operations. Four situations can occur. (1) The
the wave-ordering annotations for a requBstWe also operation is a Load or a Store with its data is present.
definenext(R) to be the sequence number of the operation proceeds to the data cache. (2) The operation
eration that actually follows? in the current instancejs a Load or a Store and a partial store queue exists for
of the wavenext(R) is determined either directly fromits address. The memory operation is sent to the partial
succ(R) or is calculated by the wave-ordering hardwargiore queue. (3) The memory operation is a Store, its
if succ(R) is "?". data has not yet arrived, and no partial store queue ex-

The store buffer contains four major microarchitegsts for its address. A free partial store queue is allocated
tural components: aordering table anext table anis- and the Store is sent to it. (4) The operation is a Load
sued registgrand a collection opartial store queues or a Store, but no free partial store queue is available or
Store buffer requests are processed in three pipeline partial store queue is full. The operation is discarded
stages: MEMORY-INPUT writes newly-arrived requestsand the issued register is rolled back. The operation will
into the ordering and next tables.BEMiORY-SCHEDULE reissue later.
reads up to fou_r requests from the grderlng table agqls Caches
checks to see if they are ready to issue.ENWRY-

OuTPUT dispatches memory operations that can fire The rest of the WaveCache’s memory hierarchy com-
the cache or to a partial store queue (described belopr)ses a 32KB, four-way set associative L1 data cache
We detail each pipeline stage of this memory interfaaeeach cluster, and a 16MB L2 cache distributed along
below. the edge of the chip (16 banks in a 4x4 WaveCache). A

3.4 The store buffer

17

directory-based multiple reader, single writer coheren@eg., the index computation of an inner loop) runs ahead

protocol keeps the L1 caches consistent. All cohererafehe rest of program, generating a vast number of to-

traffic travels over the inter-cluster interconnect. kens that will not be consumed for a long time. These
The L1 data cache has a 3-cycle hit delay. The L2&kens overflow the matching table and degrade perfor-

hit delay is 14-30 cycles depending upon the address amahce. We use a well-known dataflow technique, k-loop

the distance to the requesting cluster. Main memory unding [24], to restrict the number iteratiors,that

tency is modeled at 200 cycles. can be executing at one time. We tunéor each appli-

cation.

%7 The RTL model

3.6 Placement

Placing instructions carefully into the WaveCache
critical to good performance, because of the competifig explore the area, speed, and complexity implications
concerns we mentioned earlier. Instructions’ proximityf the WaveCache architecture, we have developed a
determines the communication latency between thesynthesizable RTL model of the components described
arguing for tightly packing instructions together. On thebove. We use the RTL model, combined with detailed
other hand, instructions that can execute simultaneouestghitectural simulation, to tune the WaveCache’s pa-
should not end up at the same processing element, fagneters and make trade-offs between performance, cy-
cause competition for the single functional unit will sezle time, and silicon area. All the specific parameters of
rialize them. the architecture (e.g., cache sizes, bus widths, etc.) we
We continue to investigate the placement problepresent reflect the results of this tuning process. The de-
and details of our endeavors are available in [23]. Hesign we present is a WaveCache appropriate for general
we describe the approach we used for the studies in fhigpose processing in 90nm technology. Other designs
paper. targeted at specific workloads or future process tech-
The placement scheme has a static and a dynanitogies would differ in choice of particular parameters,
component. At compile time, the compiler performs kut the overall structure of the design would remain the
pre-order depth-first traversal of the dataflow graph #fme. A thorough discussion of the RTL design and the
each function to generate a linear ordering of the instriighing process is beyond the scope of this paper (but can
tions. We chose this traversal, because it tends to mlkgound in [25]). Here, we summarize the methodology
chains of dependent instructions in the dataflow graphd the timing results.
and consecutive in the ordering. The compiler breaksWe derive our results with the design rules and the
the sequence of instructions into short segments. Ydéeommended tool infrastructure of the Taiwan Semi-
tune the segment length for each application. conductor Manufacturing Company’s TSMC Reference
At runtime, the WaveCache loads these short ségew 4.0 [26], which is tuned for 130nm and smaller
ments of instructions when an instruction in segmegesigns (we use 90nm). By using these up-to-date spec-
that is not mapped into the WaveCache needs to execliigations, we ensure, as best as possible, that our re-
The entire segment is mapped to a single PE. Becauseufs scale to future technology nodes. To ensure that
the ordering the compiler used to generate the segmeas, measurements are reasonable, we follow TSMC'’s
they will usually be dependent on one another. As a ggvice and feed the generated netlist into Cadence En-
sult, they will not compete for execution resources, bteunter for floorplanning and placement, and then use
instead will execute on consecutive cycles. The alggadence NanoRoute for routing [27]. After routing and
rithm fills all the PEs in a domain, and then all the ddRC extraction, we measure the timing and area values.
mains in a cluster, before moving on to the next clus-According to the synthesis tools, our RTL model
ter. It fills clusters by “snaking” across the grid, movingieets our timing goal of a 20 FO4 cycle timeiGhz
from left to right on the even rows and right to left om 90nm). The cycle time remains the same regardless
the odd rows. of the size of the array of clusters. The model also pro-
This placement scheme does a good job of schedufles detailed area measurements for the WaveCache’s
ing execution and communication resources, but a thim@mponents. Table 1 shows a break down of area within
factor, the so-called “parallelism explosion”, can haveaasingle cluster. The ratios for an array of clusters are
strong effect on performance in dataflow systems. PHre same.
allelism explosion occurs when part of an application In the next section we evaluate the WaveCache’s per-

18

Component Fraction of from Mediabench: djpeg mpeg2encoderawdaudia
cluster area We compiled each application with the DEC cc compiler
PE stages using-O4 -fast -inline speed optimizations.
INPUT 7% A binary translator-based toolchain was used to convert
MATCH 22% these binaries into WaveScalar assembly and then into
DISPATCH 38% WaveScalar binaries. The choice of benchmarks repre-
EXECUTE 4% sents a range of applications as well as the limitations of
OUTPUT 7% our binary translator. The binary translator cannot pro-
PE total 78% cess some programming constructs (e.g., compiler in-
inter-cluster 2% trinsics that don't obey the alpha calling convention and
interconnect switch jump tables), but this is strictly a limitation of our trans-
storebuffer 17% lator, not a limitation of WaveScalar’s ISA or execution
L1 cache 3% model. We are currently working on a full-fledged com-

piler that will allow us to run a wider range of applica-
Table 1:A cluster’s area budget: A breakdown of the tions.

area required for a cluster. Most of the area is devotedlo make measurements comparable with conven-
to processing resources. tional architectures, we measure performancalpha
instructions per cycl¢AIPC) and base our superscalar
comparison on a machine with similar clock speed [28].

formance on single-threaded applications and compé\lgc measures the number of non-overhead instruc-

its performance and area requirements with a convgﬂ-nz (e.0., SEER, ¢, fetc.lz executedl per CBh/_CIe' The
tional superscalar processor. AIPC measurements for the superscalar architectures we

compare to are in good agreement with other measure-
4 Single-threaded WaveCache performance ments [29].

This section measures the WaveCache’s performance offter the startup portion of each application is fin-

a variety of single-threaded workloads. We measure iiBed, we run each application for 100 million Alpha

performance of a single-cluster WaveCache design iistructions, or to completion.

ing cycIe-apcurate simulation Qf the architecture in Sezﬁ_:._-2 Single threaded performance

tion 3. This WaveCache achieves performance that is _

similar to that of a conventional out-of-order superscaib® evaluate WaveScalar's single-threaded performance,

processor, but does so in or8@% as much area. we compare three different architectures: two Wave-
Before we present the performance results in det&ches and an out-of-order processor. For the out-of-

we review the WaveCache’s parameters and describe@@er measurements, we usm-alpha configured to

L2, and main memory latencies we model for the Wave-

4.1 Methodology Cache. The two WaveCache configurations\&i@1x],
Table 2 summarizes the parameters for the WaveCaeahtx1 array of clusters, arM/C2x2 a 2x2 array. The
we use in this section. only other difference between the two is the size of the

To evaluate WaveCache performance, we use lahcache (1MB for WC1x1 vs 4MB for WC2x2).
execution-driven, cycle accurate simulator that closelyFigure 15 compares all three architectures on the
matches our RTL model. The performance we repaihgle-threaded benchmarks using AIPC. Of the two
here is lower than that in the original WaveScalar p#/aveCache designs, WS1x1 has better performance on
per [2]. The discrepancy is not surprising, since thiato floating point applicationsapnmpandequake. A
work used an idealized memory system (perfect L1 daiagle cluster is sufficient to hold the working set of
caches), larger, 16-PE domains, and a non-pipelined imstructions for these applications, so moving to a 4-
sign. cluster array spreads the instructions out and increases

In the experiments in this section, we use nine benaommunication costs. The costs take two forms. First,
marks from three groups. From SpecINT200§kzip, the WC2x2 contains four L1 data caches that must be
mcf twolf; from SpecFP2000ammp art, equake and kept coherent, while WC1x1 contains a single cache, so

19

WaveCache Capag-2K(WC1x1) or 8K(WC2x2) static instructions (64 per PE)
ity
PEs per Domain 8 (4 pods) Domains / Cluster | 4
PE Input Queue 16 entries, 4 banks Network Latency | within Pod: 1 cycle
PE Output Queue | 4 entries, 2 ports (1r, 1w) within Domain: 5 cycles
PE Pipeline Depth | 5 stages within Cluster: 9 cycles
inter-Cluster: 9 + cluster dist.
L1 Caches 32KB, 4-way set associative, L2 Cache 1IMB (WC1x1l) or 4MB
128B line, 4 accesses per cy- (WC2x2) shared, 128B line,
cle 16-way set associative, 10
cycle access
Main RAM 200 cycle latency Network Switch 2-port, bidirectional

Table 2: Microarchitectural parameters of the baseline WaveCache

it can avoid this overhead. Second, the average latency
of messages between instructions increases by 20% on
average, because some messages must traverse the inter-
cluster network. The other applications, excépolf
andart, have very similar performance on both configu-
rations.Twolf andart have large enough working sets to
utilize the additional instruction capacityn(lf) or the
additional memory bandwidth provided by the four L1

16 data cachesa(t).

The performance of the WS1x1 compared to OOO
does not show a clear winner in terms of raw perfor-
mance. WS1x1 tends to do better for four applications,

outperforming OOO by 4.5 on art, 66% onequake

ﬁw;ﬁ 34% onammp and 2.5< on mcf All these applica-
gooo tions are memory-bound (OOO with a perfect memory
system performs between 3.6:3detter), and two fac-
tors contribute to WaveScalar’s superior performance.
First, WaveScalar's dataflow execution model allows
several iterations to execute simultaneously. Second,
since wave-ordered memory allows many waves to be
executing simultaneously, load and store requests can
arrive at the store buffer long before they are actually
applied to memory. The store buffer can then prefetch
the cache lines that the requests will access, so when

Figure 15: Single-threaded WaveCache vs. SUPET e requests emerge from the store buffer in the correct
scalar: On average, both WaveCaches perform COMPAYer the data they need is waiting for them

rably to the superscalar.

art

equake
gzip
mcf
twolf

ammp
rawdaudio
average [

mpeg2encode

WaveScalar does less well on integer computations
due to frequent function calls. A function can only oc-
cur at the end of a wave, because called functions imme-
diately create a new wave. As a result frequent function
calls in the integer applications reduce the size of the
waves the compiler can create by 50% on average com-
pared to floating point applications, consequently reduc-

20

twice as much on-chip cache as WS1x1. To measure
the effect of the extra memory, we halved the amount of
cache in the OOO configuration (data not shown). This
change reduced OOQ's area by 41% and its performance
by 17%. WS1x1 provides 80% more performance per
area than this configuration.

%x;z; For most of our workloads, the WaveCache’s bottom-
0000 line single-threaded AIPC is as good as or better than
conventional superscalar designs, and it achieves this
level of performance with a less complicated design and
in a smaller area. In the next two sections we extend
WaveScalar’s abilities to handle conventional pthread-
style threads and to exploit its dataflow underpinnings
to execute fine-grain threads. In these areas, the Wave-
Cache’s performance is even more impressive.

art [
gzip W

ammp M

equake
average i

rawdaudio [

mpeg2encode M

5 Running multiple threads in WaveScalar

(F:|guhre ;G:Fr:erfolrman(_:e per_umt area. ;I’he 1)(1 Wave- The WaveScalar architecture described so far can sup-
ache Is the clear winner in terms of periormance IO&Srtasingle executing thread. Modern applications such
area. as databases and web servers use multiple threads both

)) i . as a useful programming abstraction and to increase per-
ing memory parallelism.Twolf andgzip are hit hard- ¢ o by exposing parallelism.

est by this effect, and OOO outperform WS1x1 by 54% Recently, manufacturers have begun placing several

and 32% respectively. For the rest of the applicatiorbsmcessors on a single die to create chip multiproces-
WS1x1 is no more than 10% slower than OOO. sors (CMPs). There are two reasons for this move:
The performance differences between the two archirst, scaling challenges will make designing ever-larger
tectures are clearer if we take into account the die akggyerscalar processors infeasible. Second, commercial
required for each processor. To estimate the Sizeﬁ;kloads are often more concerned with the aggregate
OOQ, we examined a die photo of the EV7 in 180nferformance of many threads rather than single-thread
technology [31, 32]. The entire die is 38*. From performance. Any architecture intended as an alterna-
this, we subtracted the area devoted to several compas to CMPs must be able to execute multiple threads
nents that our RTL model does not include (e.g., tgﬁnu|taneous|y_
PLL, 1O pads, and inter-chip network controller), but Thjs section extends the single-threaded WaveScalar
would be present in a real WaveCache. We estimate fa&ign to execute multiple threads. The key issues that
remaining area to be-29Imm?, ‘("ith ~207mm? de- \yaveScalar must address are managing multiple, par-
voted to 2MB of L2 cache. Sgallng all these measurgyg| sequences of wave-ordered memory operations,
ments to 90nm technology yields72mm? total and gifferentiating between data values that belong to dif-
5Imm? of L2. Measurements from our RTL modefgrent threads, and allowing threads to communicate.
show that WC1x1 occupies 28n® (12mm® of L2 \yayeScalar's solution to these problems are all sim-
cache) and WC2x2 occupies 100w (44mm?* of L2 pje and efficient. For instance, WaveScalar is the first
cache) in 90nm. architecture to allow programs to manage memory or-
Figure 16 shows the area-efficiency of the Waveering directly by creating and destroying memory or-
Caches measured in AIPR@m? compared to OOO. Thederings and dynamically binding them to a particular
WaveCache’s more compact design allows WS1x1tiread. WaveScalar's thread-spawning facility is effi-
extract 2.5 as much AIPC per area as OOO, on agient enough to parallelize small loops. Its synchroniza-
erage. The results for WS2x2 show that, for these an mechanism is also light-weight and is tightly inte-
plications, quadrupling the size of the WaveCache dagsated into the dataflow framework.
not have an commensurate effect on performance. The required changes to the WaveCache to support
Because OOQO is configured to match the EV7, it hdee ISA extensions are surprisingly small, and do not

21

impact the overall structure of the WaveCache, becauge introduce several instructions that converaw/-
executing threads dynamically share most WaveCadthemMBERS and THREAD-IDs to normal data values and
processing resources. back again. The most powerful of these iTA-

To evaluate the WaveCache’s multithreaded perfdro-THREAD-WAVE, which sets both the AREAD-
mance, we simulate an 64-cluster design, represdmt-and WAVE-NUMBER at once; AXTA-TO-THREAD-
ing an aggressive “big iron” processor built in nexWAVE takes three inputs<ity, wo>.t1, <tg, wo>.wi,
generation process technology and suitable for larged <tg, wo>.d and produces as outputty, wi>.d.
scale multithreaded programs. For most SplashAveScalar also provides two instructionsafi@-To-
benchmarks, the WaveCache achieves nearly lind&READ and DATA-TO-WAVE) to set THREAD-IDS
speedup with up to 64 concurrent threads. To place ted WAVE-NUMBERS separately, as well as two instruc-
multithreaded results in context with contemporary dgens (THREAD-TO-DATA and WAVE-TO-DATA) to ex-
signs, we compare a smaller, 16-cluster array that cotrigct THREAD-1Ds and WAE-NUMBERS. Together, all
be built today with a range of multithreaded von Nethese instructions place WaveScalar's tagging mecha-
mann processors from the literature. For the workloagism completely under programmer control, and allow
the studies have in common, the WaveCache outpmmegrammers to write software such as threading li-
forms the von Neumann designs by a factor of betweleraries. For instance, when the library spawns a new
2 and 16. thread, it must relabel the inputs with the new thread’s

The next two sections describe the multihthreadifigiREAD-ID and the VAVE-NUMBER of the first wave
ISA extensions. Section 5.3 presents the Splash-2iredits execution. RTA-TO-THREAD-WAVE accom-
sults and contains the comparison to multithreaded valishes exactly this task.

Neumann machines. . L . .
Managing memory orderings: Having associated a

5.1 Multiple memory orderings THREAD-ID with each value and memory request, we

As previously introduced, the wave-ordered memory iROW extend the wave-ordered memory interface to en-
terface provides support for a single memory orderir@P!€ programs to associate memory orderings with
Forcing all threads to contend for the same memory ihHREAD-IDS. Two new instructions control the creation
terface, even if it were possible, would be detrimental @\d destruction of memory orderings, in essence cre-
performance. Consequently, to support multiple threa@ng and terminating coarse-grain threadseMORY-

we extend the WaveScalar architecture to allow mulEQUENCESTART and MEMORY-SEQUENCE STOP.

ple independent sequences of ordered memory accessdd EMORY-SEQUENCE START creates a new wave-
each of which belongs to a separate thread. First, we @fflered memory sequence for a new thread. This se-
notate every data value with aiREAD-ID in addition duence is assigned to a store buffer, which services all
to its WAVE-NUMBER. Then, we introduce instructiongnemory requests tagged with the threadisREAD-I1D

to associate memory-ordering resources with particufdld WAVE-NUMBER; requests with the same{READ-
THREAD-IDs. ID but a different VAVE-NUMBER cause a new store

uffer to be allocated.
THREAD-IDs: The WaveCache already has a mecR— :
MEMORY-SEQUENCESTOP terminates a memory

anism for distinguishing values and memory requests, .
-) oréiermg sequence. The wave-ordered memory system
within a single thread from one another —they are taggﬁz

with WAVE-NUMBERS. To differentiate values from €S this instruction to ensure that all memory opera-

different threads, we extend this tag with &HREAD- tions in the sequence have completed before its store

Ib and modify WaveScalar's dataflow firing rule to ret_)uffer resources are released. Figure 17 illustrates how,

: using the new instructions, threadreates a new thread
quire that operand tags match on botlREAD-ID .
and WAVE-NUMBER. As with WavE-NUMBERS, ad- s, threads executes and then terminates.
ditional instructions are provided to directly manipulatenplementation: Adding support for multiple mem-
THREAD-IDs. In figures and examples throughout thery orderings requires only small changes to the Wave-
rest of this paper, the notationt, w>.d signifies a to- Cache’s microarchitecture. First, the widths of the com-
ken tagged with HREAD-ID ¢ and WAVE-NUMBER w munication busses and operand queues must be ex-
and having data valué panded to hold FREAD-IDs. Second, instead of storing
To manipulate FREAD-IDs and WAVE-NUMBERS, each static instruction from the working set of a program

22

—
e}
|

16 -
@ 14 -
g \
'g \ 4x speedup
S 12 \
- 2x speedup
o
20l @ A
B £y \
2 N ~
a 8- * ~
g ‘ ~
S . 1x speedup ~ ~
g 61 . -
c .
Q * "¢ ~ A — —A
g . _
o 4 . —~— o — —a
\‘ ------ PO .- .. .
* IRRCIEEEEE .
0 ‘ ‘ : ‘ ‘ |
0 5 10 15 20 25 30

Loop body length (instructions)

Figure 18: Thread creation overhead: Contour lines for speedups @f (no speedup)2x and4x. The area
above the each line is a region of program speedup at or above the stated value. Spawning wave-ordered threads
in the WaveCache is lightweight enough to profitably parallelize loops with as few as ten instructions in the loop

body if four independent iterations may execute.

23

in the WaveCache, one copy of each static instruction is
stored for each thread. This means that if two threads
are executing the same static instructions, each may map
the static instructions to different PEs. Finally, the PEs
must implement the AIREAD-ID and WAVE-NUMBER
manipulation instructions.

Efficiency: The overhead associated with spawning a
e thregd directly affects _the granular_ity of extractable par-
\ * ' allelism. To assess this overhead in the WaveCache, we
designed a controlled experiment consisting of a simple
parallel loop in which each iteration executes in a sep-
<tw>.u arate thread. The threads have their own wave-ordered
memory sequences but do not have private stacks, so
they cannot make function calls. We varied the size
of the loop body, which affects the granularity of par-

[MemorySequenceStart J

uonea.o peaiy | ——|
A
v
Q.
A
H
v
(7]

<s:u>.d
<siu>.e allelism, and the dependence distance between mem-
;S:“>-f ory operands, which affects the number of threads that

can execute simultaneously. We then measured speedup
compared to a serial execution of a loop doing the same

Ordered thread body
executes

— work. The experiment’s goal was to answer the fol-
§ e (MemorySequenCGStop) lowing question: Given a loop body with a critical path
g8 L length of N instructions and a dependence distance that
58 <s:u>.finished eng p
S allowsT iterations to run in parallel, can the WaveCache

L speed up execution by spawning a new thread for every
Figure 17: Thread creation and destruction: Thread '00P iteration?
¢ spawns a new threas by sendings's THREAD-ID Figure 18 is a contour plot of speedup of the loop as a
(s) and WAVE-NUMBER (1) to MEMORY-SEQUENCE function of its loop size (critical path length ino® in-
START, which allocates a store buffer to handle the firSiructions, the horizontal axis) and dependence distance
wave in the new thread. The result of theeMory- (independent iterations, the vertical axis). Contour lines

SEQUENCE START instruction helps trigger the thred'® Shown for speedups bk (no speedup)>x and4 x.

DATA-TO-THREAD-WAVE instructions that set up's The area above each line is a region of program speedup
three input parameters. The inputs to eacht ator above the labeled value. The data show that the
To-THREAD-WAVE instruction are a parameter valudvaveScalar overhead of creating and destroying threads

(d, e, or f), the new THREAD-ID (s) and the new is so low that for loop bodies of only 24 dependent in-
WAVE-NUMBER (). A token withu is produced by Structions and a dependence distance of 3, it becomes

M EMORY-SEQUENCE START deliberately, to guaranteea}dvanta.geous_to spawn a thread to e_xecute each itera-
that no instructions in threagdlexecute until Memory- tion (A in the figure). A dependence distance of 10 re-
SEQUENCESTART has finished allocating its S,[Oré_zluces the size of profitab!y parallelizable |O(?pS to o_nIy4
buffer. Threads terminates with MMORY-SEQUENCE Instructions (‘B’). Increasing the number of instructions
Stop, whose output tokencs, u>. finished guaran- © 20 quadruples performance ('C’).

tees that its store buffer area has been deallocated. 5.2 Synchronization

The ability to efficiently create and terminate pthread-

style threads, as described in the previous subsection,
provides only part of the functionality required to make

multithreading useful. Independent threads must also
synchronize and communicate with one another. To this
end, WaveScalar provides a memory fence instruction
that allows WaveScalar to enforce a relaxed consistency

24

model and a specialized instruction that models a hapdeduce outputs with the same tag (Figure 19, left). For
ware queue lock. example, in the figure, both the input tokens and the re-
sult have HREAD-ID ty and WAVE-NUMBER wy.

_ . _In contrast, HREAD-COORDINATE fires when the
Wave-ordered memory provides a single thread withygia valueof a token at its first input matches the
consistent view of memory, since it guarantees that fireap-1p of a token at its second input. This is de-
results of earlier memory operations are visible to lat§jteq on the right side of Figure 19, where the data
operations. In some situations, such as before taking,gye of the left input token and thedREAD-ID of the
releasing a lock, a multithreaded processor must guarggn input token are both;. THREAD-COORDINATE

tee that the results of a thread’s memory operations gtgerates an output token with theiFEAD-ID and
visible tootherthreads. We add to the ISA an additiong\;n,e-NUMBER from the first input and the data

instruction, MEMORY-NOP-ACK that provides this as-\,5/ue from the second input. In Figure 19, this pro-
surance by acting as a memory fenceEMbRY-NOP- 4 ,ces an output oftg, wy>.d. In essence, AREAD-
Ack prompts the wave-ordered interface to commit th€; orpiNaATE passes the second input’s valdg o the
thread's prior loads and stores to memory, thereby @fread of the first inputt(). Since the two inputs come
suring their visibility to other threads and providingom gifferent threads, this forces the receiving thread
WaveScalar with a relaxed consistency model [33]. Tn% in this case) to wait for the data from the sending
interface then returns an acknowledgment, which thgegg {1) before continuing execution.

thread can use to trigger execution of its subsequent in support HREAD-COORDINATE in hardware, we

structions. augment the tag matching logic at each PE. We add
5.2.2 Interthread synchronization two microarchitectural counters at each PE to rela-

Most commercially deployed multiprocessors and mu%eI the WAVE-NUMBERS of the inputs to 'HREAD-

tithreaded processors provide interthread synchroni ?]OE%RD'(;\'ATEU'DSUL:? |ons| ts)ol_the)t/hare ;grﬁ_cessed n
tion through the memory system via primitives such order. 1sing this refabeling, the matching queues

as TESTAND-SET, COMPAREAND-SWAP, Of LOAD- naturally form a serializing queue with efficient constant

im ndn rvation.
LOCK/STORECONDITIONAL. Some research effortst e access and no starvatio .
Although one can construct many kinds of syn-

also propose building complete locking mechanisms i Y . .

hardware [34, 35]. Such queue locks offer many p nronization objects usingHREAD-COORDINATE, for

formance ad\;antages in the presence of high lock c ﬁ?Vity we only illustrate a simple mutex (Figure 20).
In this case, AREAD-COORDINATE is the vehicle by

tention. . :
In WaveScalar, we add support for queue locks W]hlch a thread releasing a mutex passes control to an-
’ %her thread wishing to acquire it.

a way that constrains neither the number of loc Th tex in Fi 20 ted bviaRE
nor the number of threads that may contend for the € mutexin Figure 20 1S represented by leREAD-
m, although it is not a thread in the usual sense;

lock. This support is embodied in a synchronizé—D’tt 4t le function is t auel th
tion instruction called HREAD-COORDINATE, which Instead/, S Sole unction Is to uniquely name the mu-

synchronizes two threads by passing a value betw%%)ﬁ' ,?thregdtﬁtth_zt ha:csfllocked Iin utes, releast(;s ![ttlr?
them. THREAD-COORDINATE is similar in spirit to Wo steps (right side of figure). First, ensures that the

other lightweight synchronization primitives [36, 37 memory operations it executed inside the critical sec-

but is tailored to WaveScalar’s dataflow framework. 'Il'cr)1n ha;ve comp&eted_lt} y ?I_XeCUtInQEWORY'tN ?E-Atci.
As Figure 19 illustrates, FREAD-COORDINATE re- en, t1 uses LATA-10-THREAD 10 create the token

quires slightly different matching rules. 2 All <tm, u>.t,, Which it sends to the second input port of

WaveScalar instructiorexcep{T HREAD-COORDINATE THREA'[E'C;ORD'N'f‘T'tEhthfgreby releas;[ng thtet mutex:
fire when the tags of two input values match, and th hother threado in the figure, can attempt to acquire

the mutex by sending g, w>.t,, (the data is the mu-
“Some previous dataflow machines altered the dataflow firitgx) to THREAD-COORDINATE. This token will either

rule for other purposes. For example, Sigma-1 used “sticky” tagsftfd the token front; waiting for it (i.e., the lock is free)
prevent the consumption of loop-invariant data and “error” tokens o . . .
swallow values of instructions that incurred exceptions [38]. Mor(ls(F await its arrival (i.e./y still holds the lock). When

soon's M-structure store units had a special matching rule to enfolB€ release token fromy and the request token frorp
load-store order [39]. are both present, HREAD-COORDINATE will find that

5.2.1 Memory fence

25

Thread t, ' Thread t;

acquires t . releasest
<t u>t
match match (from critical section)
| —————— |
<t0.w0>.d0 <t.wo>.d1 <tywg>.t; <t w,> S Memory-

\ m \ y; Nop-Ack

\ \\ / —— == — _

,ﬂ_‘ N\ <tyw>.ty, | <tu>t
<t01W0>. dO + dl <tO:WO>'d to requests mutex

Figure 19:Tag matching: Most instructions, like
the ADD shown here at left, fire when the thread
and wave numbers on both input tokens match.
Inputs to THREAD-COORDINATE (right) match if

t; releases mutex

! Thread- ‘;
' | Coordinate ;!

_ <tyw>.t
the THREAD-ID of the token on the second input
matches the data value of the token on the first (to critical §6ction)
input.

Figure 20: A mutex: THREAD-COORDINATE is
used to construct a mutex, as described in the text.

] Benchmark \ Parameters the results from the RTL model described in Section 3.7
fft -m12 scaled to 45nm, we estimate that the processor occupies
lu -n128 ~290mm?, with an on-chip 16MB L2.
radix -n16384 -r32 After skipping past initialization, we measure execu-
ocean-noncont -n18 tion of the parallel phases of the benchmarks. Our per-
water-spatial | 64 molecules formance metric is execution-time speedup relative to a

single thread executing on the same WaveCache. We
Table 3: Splash-2 benchmarks and their parameters uggg compare the WaveScalar speedups to those calcu-
in this study. lated by other researchers for other threaded architec-
tures. Component metrics help explain these bottom-

line results, where appropriate.

they match according to the rules discussed above, gj@juation of a multithreaded WaveCache. Fig-
it will then produce a tokercty, w>.tn,. If allinstruc- yre 21 contains speedups of multithreaded WaveCaches
tions in the critical section guarded by mutexdepend for all six benchmarks, as compared to their single-
on this output token (directly or via a chain of data dénreaded running time. On average, the WaveCache
pendenceS), thread cannot execute the critical Sectio%chieves near-linear Speedup @gor up to 32 threads.
until THREAD-COORDINATE produces it. Average performance increases sub-linearly with 128
threads, up to 4X speedup with an average IPC of 88.
Interestingly, increasing beyond 64 threadsdoean
In this section, we evaluate WaveScalar's multithreaaid raytrace reduces performance. The drop-off oc-
ing facilities by executing coarse-grain, multithreademlirs because of WaveCache congestion from the larger
applications from the Splash-2 benchmark suite (Tiastruction working sets and L1 data evictions due to
ble 3). We use the toolchain and simulator describedpacity misses. For example, going from 64 to 128
in Section 4.1. We simulate an 8x8 array of clusters tlwreads,oceansuffers 18% more WaveCache instruc-
model an aggressive, future-generation design. Ustian misses than would be expected from the additional

5.3 Splash-2

26

90

168
80

w
iy

88

u
o
T ITITIIIIIIN

40

1.2

.z

2.0 1.8 1.4 1.2
0 i " ul u u

fft [¥] ocean water raytrace radix average

Figure 21:Splash-2 on the WaveCache.We evaluate each of our Splash-2 benchmarks on the baseline Wave-
Cache with between 1 and 128 threads. The bars represent speedup in total execution time. The numbers above the
single-threaded bars are IPC for that configuration. Two benchmasgter andradix, cannot utilize 128 threads

with the input data set we use, so that value is absent.

compulsory misses. In addition, the operand matalerse sources is difficult, and drawing precise conclu-
ing cache miss rate increases by 23%. Finally, the datans about the results is hard; however, we believe that
cache miss rate, which is essentially constant for upthe measurements are still valuable for the broad trends
32 threads, doubles as the number of threads scalethéy reveal.
128. This additional pressure on the memory system in<To make the comparison as equitable as possible, we
creasecears memory access latency by a factor qfse a smaller, 4x4 WaveCache for these studies. Our
eleven. RTL model gives an area of 258n? for this design (we
The same factors that cause the performanoeeén assume an off-chip, 16 MB L2 cache and increase its
and raytrace to suffer when the number of threadgccess time from 10 to 20 cycles). While we do not have
exceeds 64 also reduce the rate of speedup imprgyiecise area measurements for the other architectures,
ment for other applications as the number of threads e most aggressive configurations (i.e., most cores or
creases. For example, the WaveCache instruction nifsctional units) are in the same ball park with respect
rate quadruples folu when the number of threads into sjze.
creases from 64 to 128, curbing speedup. In contrasty, failitate the comparison of performance numbers
FFT, with its relatively small per-thread working set of¢ these different sources, we normalized all perfor-
instructions and data, does not tax these resources, @adce numbers to the performance of a simulated scalar
so achieves better speedup with up to 128 threads. processor with a 5-stage pipeline. The processor has
Comparison to other threaded architectures We 16KB data and instruction caches, and a 1IMB L2 cache,
compare the performance of the WaveCache and a fil#-way set associative. The L2 hitlatency is 12 cycles,
other architectures on three Splash-2 kernlelsfft and and the memory access latency of 200 cycles matches
radix. We present results from several sources in addiat of the WaveCache.
tion to our own WaveCache simulator. For CMP con- Figure 22 shows the results. The stacked bars rep-
figurations we performed our own experiments usingesent the increase in performance contributed by exe-
simple in-order coregcmy), as well as measurementsuting with more threads. The bars labeled depict
from [40] and [41]. Comparing data from such dithe performance of the WaveCache. The bars labeled

27

46

= (1128 threads
25 $ 164 threads
B4 32 threads
16 threads

£ I

= T
) R
izl

e I

Speedup vs 1-thread scalar CMP

15 - A8 threads
M4 threads

10 ! ‘%; r—l B2 threads
% 3 § : W1 thread

Figure 22: Performance comparison of various architectures.:Each bar represents performance of a given
architecture for a varied number of threads. We normalize running times to that of a single-issue scalar processor
with a high memory access latency, and compare speedups of various multithreaded architectiges4x4
WaveCachescmpis a CMP of the aforementioned scalar processor on a shared bus with MESI cohsret&e.
cmp4andcmp?2are an 8-threaded SMT, a 4-core out-of-order CMP and a 2-core OO0 CMP with similar resources,
from [40]. ekman[41] is a study of CMPs in which the number of cores is varied, but the number of execution
resources (functional units, issue width, etc.) is fixed.

28

scmprepresent the performance of a CMP whose corasion occurs at 16 processors for LU, 8 for FFT and
are the scalar processors described above with IMB2dor RADIX3. For the other von Neumann CMP sys-
L2 cache per processor core. These processors are tems, the fixed allocation of execution resources is the
nected via a shared bus between private L1 caches imit [40], resulting in a decrease in per-processor IPC.
a shared L2 cache. Memory is sequentially consistefty example, inekman per-processor IPC drops 50%
and coherence is maintained by a 4-state snoopy pra@s-the number of processors increases from 4 to 16 for
col. Up to 4 accesses to the shared memory may overBRADIX and FFT. On the WaveCache, speedup plateaus
For the CMPs the stacked bars represent increased p#ren the working set of all the threads equals its in-
formance from simulating more processor cores. Thestruction capacity. This offers WaveCache the oppor-
and 8-core bars loosely moddiydra [42] and a single tunity to tune the number of threads to the amount of
Piranhachip [43], respectively. on-chip resources. With their static partitioning of exe-
The bars labeledmt§ cmp4 and cmp2 are the 8- cution resources across processors, this option is absent
threaded SMT and 4- and 2-core out-of-order CMBa CMPs; and the monolithic nature of SMT architec-
from [40]. We extracted their running times from dataures prevents scaling to large numbers of thread con-
provided by the authors. Memory latency is low on thegexts.
systems (dozens of cycles) compared to expected futgr
latencies, and all configurations share the L1 data- an
instruction caches. The WaveCache has clear promise as a multiprocess-
To compare the results from [41] (labelemanin ing platform. In the 90nm technology available today,
the figure), which are normalized to the performangee could easily build a WaveCache that would outper-
of their 2-core CMP, we simulated a superscalar witarm a range of von Neumann-style alternatives, and,
a configuration similar to one of these cores and halvasl we mentioned earlier, scaling the WaveCache to fu-
the reported execution time; we then used this figuretege process technologies is straightforward. Scaling
an estimate of absolute baseline performance. In [41jylti-threaded WaveScalar systems beyond a single die
the authors fixed the execution resources for all cda-also feasible. WaveScalar’s execution model makes
figurations, and partitioned them among an increasiagd requires no guarantees about communication la-
number of decreasingly wide CMP cores. For examplency, so using several WaveCache processors to con-
the 2-thread component of tiekmanbars is the perfor- struct a larger computing substrate is a possibility.
mance of a 2-core CMP in which each core has a fetchn the next section we investigate the potential of
width of 8, while the 16-thread component representéaveScalar’s core dataflow execution model to support
the performance of 16 cores with a fetch-width of 1. La second, finer-grain threading model. These fine-grain
tency to main memory is 384 cycles, and latency to tlieeads utilize a simpler, unordered memory interface,
L2 cache is 12 cycles. and can provide huge performance gains for some ap-
The graph shows that the WaveCache can handily quiteations.
perform the other architectures at high thread counés.
It executesl.8x to 10.9x faster thanscmp 5.2x to
10.8x faster tharsmt§ and6.4x to 16.6x faster than The WaveScalar instruction set we have described so far
the various out-of-order CMP configurations. Compeeplicates the functionality of a von Neumann proces-
nent metrics show that the WaveCache’s performarss or a CMP composed of von Neumann processors.
benefits arise from its use of point-to-point communiroviding these capabilities is essential if WaveScalar is
cation, rather than a system-wide broadcast mechanitore a viable alternative to von Neumann architectures,
and from the latency-tolerance of its dataflow executidwit it is not the limit of what WaveScalar can do.
model. The former enables scaling to large numbers ofThis section exploits WaveScalar's dataflow under-
clusters and threads, while the latter helps mask the finning to achieve two things that conventional von
creased memory latency incurred by the directory prota-
col and the high load-use penalty on the L1 data cache. SWhile a 128-corescmpwith a more sophisticated coherence

tem might perform more competitively with the WaveCache on
The performance of all systems eventually plateagngx and FFT, studies of these systems are not present in the lit-

when some bottleneck resource saturates. $€0NP erature, and it is not clear what their optimal memory system design
this resource is shared L2 bus bandwidth. Bus sa#uld be.

Discussion

WaveScalar's dataflow side

29

Neumann machines cannot. First, it provides a s@ences. This means that if two unordered memory op-
ond,unorderednemory interface that is similar in spiriterations are not directly or indirectly data dependent,
to the token-passing interface in Section 2.2.6. Theey can execute in any order. Programmers and compil-
unordered interface is built to express memory paraks can exploit this fact to express parallelism between
lelism. It bypasses the wave-ordered store buffer amgmory operations that can safely execute out of order;
accesses the L1 cache directly, avoiding the overhdemvever, they need a mechanism to enforce ordering
of the wave-ordering hardware. Because the unordeasdong those that cannot.
operations do not go through the store buffer, they caro illustrate, consider a Store and a Load that could
arrive at the L1 cache in any order or in parallel. As weotentially access the same address. If, for correct exe-
describe below, the programmer can restrict this ordewtion, the Load must see the value written by the Store
ing by adding edges to the programs dataflow graph. (i.e., a read-after-write dependence), then the thread
Second, the WaveCache can support very fine-grainst ensure that the Load does not execute until the
threads. On von Neumann machines the amountSibre has finished. If the thread uses wave-ordered
hardware devoted to a thread is fixed (e.g., one corernamory, the store buffer enforces this constraint; how-
CMP or one thread context on an SMT machine), arder, since unordered memory operations bypass the
the number of threads that can execute at once is relave-ordered interface, unordered accesses must use a
tively small. On the WaveCache, the number of physidifferent mechanism.
store buffers limits the number of threads that use wave-To ensure that the Load executes after the Store, there
ordered memory, but any number of threads can use tingst be a data dependence between them. This means
unordered interface at one time. In addition, spawningemory operations must produce an output token that
these threads is very cheap. As a result, it is feasibkn be passed to the operations that follow. Loads al-
to break a program up into 100s of parallel, fine-graieady do this, because they return a value from memory.
threads. We modify Stores to produce a value when they com-
We begin by describing the unordered memory ipiete. The value that the token carries is unimportant,
terface. Then we use it and fine-grain threads to estace its only purpose is to signal that the Store is com-
press large amounts of parallelism in three appligalete. In our implementation it is always zero. We call
tion kernels. Finally, we combine the two styles afnhordered Loads and StorespAD-UNORDERED and
programming to parallelizequakefrom the Spec2000 STORE-UNORDERED-ACK, respectively.
floatlng point SU,I'[e, g_nd demonstrate that by C(_)mblg.-l.1 Performance evaluation
ing WaveScalar’s ability to run both coarse-grain von
Neumann-style threads and fine-grain dataflow-style demonstrate the potential of unordered memory, we
threads, we can achieve performance greater than implemented three traditionally parallel but memory-
lizing either alone, in this case 9% speedup. intensive kernels — matrix multiply (MMUL), longest
common subsequence (LCS), and a finite input response
filter (FIR) — in three different styles and compared their
As described, WaveScalar’s only mechanism for accepefformance.Serial coarse-grairuses a single thread
ing memory is the wave-ordered memory interface. Thwitten in C.Parallel coarse-grairis a coarse-grain par-
interface is necessary for executing conventional padlelized version, also written in C, that uses the coarse-
grams, but it can only express limited parallelism (i.egrain threading mechanisms described in Sectiddrb.
by using ripple humbers). WaveScalar's unordered iokdereduses a single coarse-grain thread written in C to
terface makes a different trade-off: it cannot efficientlyontrol a pool of fine-grain threads that use unordered
provide the sequential ordering that conventional pnmemory, written in WaveScalar assembly. We call these
grams require, but it excels at expressing parallelisamordered threads
because it eliminates unneeded ordering constraints andor each application, we tuned the number of threads
avoids contention for the store buffer. Because of thisaitd the array tile size to achieve the best performance
allows programmers or compilers to express and explpdssible for a particular implementation. MMUL multi-
memory parallelism when they know it exists. plies 128 x 128 entry matrices, LCS compares strings
Like all other dataflow instructions, unordered opeof 1024 characters, and FIR filters 8192 inputs with
ations are only constrained by their static data dep@%6 taps. They use between JF2R) and 1000 (CS

6.1 Unordered memory

30

300 6 FIR and LCS are less memory-bound thaiMUL
because they load values (input samples FtR and
characters fo,CS from memory only once pass and
12 then pass them from thread to thread directly. For these
10 two applications the limiting factor is inter-cluster net-
work bandwidth. Both algorithms involves a great deal
of inter-thread communication, and since the computa-
6 tion uses the entire 8x8 array of clusters, inter-cluster
a communication is unavoidable. FaCS27% of mes-
sages travel across the inter-cluster network compared,
to 0.4-1% for the single-threaded and coarse-grain ver-
R, i e sions, and the messages move 3.6 times more slowly due
E;:gg;;?;eaded B coarse-grain to congestion.FIR displays similar behavior. A better
placement algorithm could alleviate much of this prob-
Figure 23: Fine-grain performance: These graphslem and improve performance further by placing the in-
compare the performance of our three implementatistnuctions for communicating threads near one another.
styles. The graph on the left shows execution-ti
speedup relative to the serial coarse-grain impleme
tion. The graph on the right compares the work per cydeSection 5, we explained the extensions to WaveScalar
achieved by each implementation measured in multipipat support coarse-grain, pthread-style threads. In the
accumulates for MMUL and FIR and in character corfrévious section, we introduced two lightweight mem-

250

200

150

100

Speedup vs single-threaded
Application work units per cycle

50

2

i 22 Mixing threading models

parisons for LCS. ory instructions that enable fine-grain threads and un-
ordered memory. In this section, we combine these
threads. Each version is run to completion. two models; the result is a hybrid programming model

Figure 23 depicts the performance of each algoritﬁhﬁt enables coarse- and fine-grain threads to coexist
executing on the 8x8 WaveCache described in Sétthe same application. We begin with two examples
tion 5.3. On the left, it shows speedup over the serfigt illustrate how ordered and unordered memory op-
implementation, and, on the right, average units of woekations can be used together. Then, we exploit all of
completed per cycle. For MMUL and FIR, the unit opur threading techniques to improve the performance of
work selected is a multiply-accumulate, while for LCS3Pec2000'®quakeby a factor of nine.

itis a character comparison. We use application-specfi 1 Mixing ordered and unordered memory
performance metrics, because they are more informa-

tive than IPC when comparing the three implement%-ke%’ st.rengt_h 0:1 our (t))rlqered and _un(_)rd(;red memory
tions. For all three kernels, the unordered implemenfﬁ_—ec anisms Is their ability to coexist in the same ap-

tions achieve superior performance because they expggffat'oré' Segltlons Ff arglappllcatlon that have indepen-
more parallelism. ent and easily analyzable memory access patterns (e.g.,

The benefits stem from two sources. First, the uW—atr'X manipulations and stream processing) can use

ordered implementations can use more threads. Itwomg unordered interface, while difficult to analyze por-

. . tloas (e.g., pointer-chasing codes) can use wave-ordered
be easy to write a pthread-based version that SloaWrr1neemor In this section, we take a detailed look at how
100s or 1000s of threads, but the WaveCache cannott)I< | y.hi ved ’

ecute that many ordered threads at once, since there aPe sac e' ed. .

e describe two ways to combine ordered and un-

not enough store buffers. Secondly, within each threa)
ered memory accesses. The first turns off wave-

the unordered threads’ memory operations can exec?f% q th dered interf dth
in parallel. As a result, the fine-grain, unordered iy, ered memory, uses the unordered Interiace, and then

plementation exploit more inter- and intra-thread paréﬁ'nStates wave-ordering. The second, more flexible ap-
lelism. MMUL is the best example; it executes 27 mer,;?_roach allows the ordered and unordered interfaces to

ory operations per cycle on average (about one per 86'—St simultaneously.
ery two clusters), compared to just 6 for the coarse-gr&rample 1: Figure 24 shows a code sequence that
version. transitions from wave-ordered memory to unordered

31

struction from Section 5.2.1 allows programs to take ad-
vantage of this technique. Recall thaEMORY-NOP-
Ack is a wave-ordered memory operation that operates
like a memory fence instruction, returning a value when
it completes. We use it here to synchronize ordered and
unordered memory accesses. In funcfion , the loads
and stores that copfv intot can execute in parallel
but must wait for the store tp, which could point to
any address. Likewise, the load from addrgssannot
proceed until the copy is complete. The wave-ordered
memory system guarantees that the storp,tthe two
MEMORY-NOP-ACKS, and the load frong fire in the
order shown (top to bottom). The data dependences be-
tween the first MMORY-NOP-ACK and the unordered
loads at left ensure the copy occurs after the first store.
H'gle ADD instruction simply coalesces the outputs from
the two SSORE-UNORDERED-ACK instructions into a
trigger for the second EMORY-NOP-ACK that ensures
The process is quite an?-e copy is complete before the final load.

Ordered Code

<tw>.v

ThreadToData
MemorySequenceStop

<tw>t <t:w> finished

Arbitrary unordered
code

WaveToData

MemorySequenceStart
Ordered Code

Figure 24:Transitioning between memory interfaces:
The transition from ordered to unordered memory a
back again.

memory and back again.
lar to terminating and restarting a pthread-style thre@2.2 A detailed example: equake
At the end of the ordered code, &eiREAD-TO-DATA
instruction extracts the currentHREAD-ID, and a
MEMORY-SEQUENCESTOP instruction terminates the

current memory ordering. EMORY-SEQUENCESTOP o .)
y g Q equakespends most of its time in the functiemvp

outputs a value, labelefthishedin the figure, after all ™" . . .
. . with the bulk of the remainder confined to a single loop
preceding wave-ordered memory operations have cam-,
. . In the program’snainfunction. In the discussion below,
pleted. Thefinishedtoken triggers the dependent, un- . L .
. . we refer to this loop irainassim
ordered memory operations, ensuring that they do no

execute until the earlier, ordered-memory accesses hav € e>_<pI0|t both qrdered, coarse-grain anq L_mordered,
completed ine-grain threads irquake The key loops irsim are

After the unordered portion has executed, data independent, so we parallelized them, using coarse-

a . .
MEMORY-SEQUENCESTART creates a new, orderec&gra'r1 threads that prqcess a.work queue of blocks of it-
. erations. This optimization improvesguakés overall
memory sequence using theiREAD-ID extracted pre-

\ . IE)erformance by a factor of 1.6.
viously. In principle, the new thread need not have the i
Next, we used the unordered memory interface to ex-

same HREAD-ID as the original ordered thread. In

practice, however, this is convenient, as it allows vﬁlo't fine-grain parallelism irsmvp Two opportuni-

ues to flow directly from the first ordered section to {HiES present themselves. First, each iteratiosrots

second (the curved arcs on the left side of the figur% sted loops loads data from several arrays. Since these

without THREAD-ID manipulation instructions. arrays are read-only, we used unqrdered loads to by-
pass wave-ordered memory, allowing loads from sev-

Example 2: In many cases, a compiler may be unabégal iterations to execute in parallel. Second, we tar-
to determine the targets of some memory operatiogeted a set of irregular cross-iteration dependences in
The wave-ordered memory interface must remain intaghvgs inner loop that are caused by updating an ar-
to handle these hard-to-analyze accesses. Meanwhig,of sums. These cross-iteration dependences make it
unordered memory accesses from analyzable operatigificult to profitably coarse-grain-parallelize the loop.
can simply bypass the wave-ordering interface. This apewever, the HREAD-COORDINATE instruction lets
proach allows the two memory interfaces to coexist irs extract fine-grain parallelism despite these depen-
the same thread. dences, since it efficiently passes array elements from
Figure 25 shows how the BMORY-NOP-ACK in- PE to PE and guarantees that only one thread can hold

To demonstrate that mixing the two threading styles
is not only possible but also profitable, we optimized
equake from the SPEC2000 [44] benchmark suite.

32

Wave-ordered

¥

: P
"V
s v q\
struct { (st*p,0 <0,1,2>)
int x,y; :
} point; [MemoryNopAck <1,2,3> J
foo(point *v, int *p, int *q) Unordered
{ .
point t; (Ldv>x) ((Ldv>y)
p o= 07 :
t.x = v->x; :
t.y = v=>y; (Sttx](Stty J

return *qg;
} +

(MemoryNOpAck <2,3,4>)

(Ld*q<345>)

Figure 25:Using ordered and unordered memory together:A simple example where EMORY-NOP-ACK is
used to combine ordered and unordered memory operations to express memory parallelism.

a particular value at a time. This idiom is inspirechemory orderings, and a lightweight, memoryless syn-
by M-structures [37], a dataflow-style memory elemerdhronization primitive, and a memory fence that pro-
Rewriting smvpwith unordered memory andHREAD- vides a relaxed consistency model. For finer threads,
COORDINATE improves overall performance by a factowaveScalar can disable memory ordering for specific
of 7.9. memory accesses, allowing the programmer or compiler

When both coarse-grain and fine-grain threading deceexpress large amounts of memory-parallelism, and
used togetherequakespeeds up by a factor of 9.0enabling a very fine-grain style of multithreading. Fi-
This result demonstrates that coarse-grain, pthread-stidly WaveScalar allows both types of threads to coexist
threads and fine-grain, unordered threads can be cama single application and interact smoothly.

bined to accelerate a single application. The WaveCache architecture exploits WaveScalar’s

7 Conclusion decentralized execution model to eliminate broadcast
&Gfmmunication and centralized control. Its tile-based

tecture demonstrate that dataflow processing is a wortffy>'9"S mal1<es it scalable and significantly reduces the
alternative to the von Neumann model and conventioffifNitecture’s complexity. Our RTL model shows that
scalar designs for both single- and multi-threaded WO&_WaveCache_ cgpable of running real-world, multl-
loads. threaded applications would occupy only 2532 in

Like all dataflow ISAs, WaveScalar allows prograr‘rf:-urrently avai!able process technc;logy, while a single
mers and compilers to explicitly express parallelismreaded version requires only:ah”.
among instructions. Unlike previous dataflow models, Our experimental results show that the WaveCache
WaveScalar also includes a memory-ordering scherperforms comparably to a modern out-of-order design
wave-ordered memory, that allows it to efficiently exen average for single threaded codes. For multithreaded,
cute programs written in conventional, imperative pr&plash2 benchmarks, the WaveCache achieves 30-83
gramming languages. speedup over a single threaded versions, and outper-

WaveScalar's multithreading facilities support #rms a range of von Neumann-style multithreaded pro-
range of threading styles. For conventional pthread-stgkessors by a wide margin. By exploiting our new un-
threads, WaveScalar provides thread creation and terondered memory interface, we demonstrated how hun-
nation instructions, multiple, independent wave-orderdceds of fine-grain threads on the WaveCache can com-

The WaveScalar instruction set and WaveCache ar

33

plete up to 13 multiply-accumulates per cycle for s§3] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
lected algorithm kernels. Finally, we combined all of

our new mechanisms and threading models to create a

multigranular parallel version of equake which is faster
than either threading model alone.

References

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and14]
D. Burger, “Clock rate versus IPC: The end of the road
for conventional microarchitectures,” @7th Interna-

tional Symposium on Computer Architectt2600. [15]

S. Swanson, K. Michelson, A. Schwerin, and M. Os-
kin, “WaveScalar,” inProceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecq16]
ture, p. 291, 2003.

J. B. Dennis, “A preliminary architecture for a basic
dataflow processor,” ifProceedings of the 2nd Annual
Symposium on Computer Architectut®75.

17
Arvind, “Dataflow: Passing the token.” ISCA Keynote,[
June 2005.

D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek, “Fine-grain parallelism with minima[18]
hardware support: A compiler-controlled threaded ab-
stract machine,” irProceedings of the4th International
Conference on Architectural Support for Programming
Languages and Operating Systerh891.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single ast19]
signment form and the control dependence graptM
Transactions on Programming Languages and Systems
vol. 13, pp. 451-490, October 1991.

A. L. Davis, “The architecure and system method E
DDM1: A recursively structured data driven machine(t' 0]
in Proceedings of the 5th Annual Symposium on Com-
puter Architecture(Palo Alto, California), pp. 210-215,
gEli&%omputer Society and ACM SIGARCH, April 3—

T. Shimada, K. Hiraki, K. Nishida, and S. Sekiguch#?1]
“Evaluation of a prototype data flow processor of the
sigma-1 for scientific computations,” iRroceedings

of the 13th annual international symposium on Com-
puter architecturepp. 226-234, IEEE Computer Socif22]
ety Press, 1986.

[9] J.R. Gurd, C. C. Kirkham, and |. Watson, “The manch-

[10]

[11]

[12]

ester prototype dataflow computeGommunications of [23]
the ACM vol. 28, no. 1, pp. 34-52, 1985.

M. Kishi, H. Yasuhara, and Y. Kawamura, “Dddp-a dis24]
tributed data driven processor,” @onference Proceed-
ings of the tenth annual international symposium on
Computer architecturepp. 236-242, IEEE Computer[25]
Society Press, 1983.

V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P.
Holmes, “The epsilon dataflow processor,”"Rmoceed-
ings of the 16th annual international symposium on
Computer architecturgpp. 36—-45, ACM Press, 1989.

G. M. Papadopoulos and D. E. Culler, “Monsoon: a[r%G]
explicit token-store architecture,” Broceedings of the
17th annual international symposium on Computer Ar-
chitecture pp. 82-91, ACM Press, 1990. [27]

34

and R. A. Bringmann, “Effective compiler support for
predicated execution using the hyperblock,Piroceed-
Ings of the 25th Annual International Symposium on Mi-
croarchitecture (Portland, Oregon), pp. 45-54, IEEE
Computer Society TC-MICRO and ACM SIGMICRO,
December 1-4, 1992. SIG MICRO Newsletter 23(1-2),
December 1992.

M. Beck, R. Johnson, and K. Pingali, “From control
flow to data flow,” Journal of Parallel and Distributed
Computingvol. 12, pp. 118-129, 1991.

M. Budiu, G. Venkataramani, T. Chelcea, and S. C.
Goldstein, “Spatial computation,”"SIGPLAN Not.
vol. 39, no. 11, pp. 14-26, 2004.

S. Swanson, M. Mercaldi, A. Putnam, A. Petersen,
A. Schwerin, M. Oskin, and S. Eggers, “Balancing par-
allelism and sequentiality in dataflow models: Wave-
ordered memory,” Tech. Rep. UWCSE-2005-10-3, UW-
Computer Science and Engineering, 2005.

R. Nagarajan, K. Sankaralingam, D. Burger, and
S. Keckler, “A design space evaluation of grid processor
architectures,” irProceedings of the 34th Annual Inter-
national Symposium on Microarchitecty2001.

K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, D. Burger, S. W. Keckler, and C. R. Moore,
“Exploiting ILP, TLP, and DLP with the polymorphous

TRIPS architecture,” inrProceedings of the 30th an-

nual international symposium on Computer architec-
ture, 2003.

W. Lee et al, “Space-time scheduling of instruction-
level parallelism on a Raw machine,” Rroceedings of
the 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems ASPLOS-VIIOctober 1998.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz, “Smart memories: a modular recon-
figurable architecture,” iflProceedings of the 27th an-
nual international symposium on Computer architec-
ture, pp. 161-171, ACM Press, 2000.

S. C. Goldstein and M. Budiu, “Nanofabrics:spatial
computing using molecular electronics,”Pmoceedings

of the 28th annual international symposium on Com-
puter architecturepp. 178-191, 2001.

W. J. Dally and C. L. Seitz, “Deadlock-free message
routing in multiprocessor interconnection networks,”
IEEE Trans. Computvol. 36, no. 5, pp. 547-553, 1987.

“A performance model to guide instruction scheduling
on spatial computers.” In submission to CGO 2006.

D. E. Culler, Managing Parallelism and Resources
in Scientific Dataflow Programs PhD thesis, Mas-
sachusetts Institute of Technology, March 1990.

A. Putnam, S. Swanson, M. Mercaldi, K. Michelson,
A. Petersen, A. Schwerin, M. Oskin, and S. Eggers,
“The microarchitecture of a pipelined wavescalar pro-
cessor: An RTL-based study,” Tech. Rep. UWCSE-
%882-10-2, UW-Computer Science and Engineering,

“Silicon design chain cooperation enables
nanometer chip design.” Cadence Whitepaper.
http://www.cadence.com/whitepapers/.

“Cadence website.” http://www.cadence.com.

[28] M. S. Hrishikesh, D. Burger, N. P. Jouppi, S. W. Kec41] M. Ekman and P. Stengtm, “Performance and power

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

ler, K. I. Farkas, and P. Shivakumar, “The optimal logic
depth per pipeline stage is 6 to 8 fo4 inverter delays,”
in Proceedings of the 29th annual international symp([‘,-
sium on Computer architecturpp. 14—24, IEEE Com- 42]
puter Society, 2002.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhar(til3
and T. Austin, “A systematic methodology to com]
pute the architectural vulnerability factors for a high-
performance microprocessor,” MICRO 36: Proceed-
ings of the 36th annual IEEE/ACM International Sym-
posium on MicroarchitecturgWashington, DC, USA),

p. 29, IEEE Computer Society, 2003.

R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-
alpha: a validated, execution-driven alpha 21264 simu-
lator,” Tech. Rep. TR-01-23, UT-Austin Computer Scir44]
ences, 2001.

A. J. et. al., “A 1.2ghz alpha microprocessor with
44.8gb/s chip pin bandwidth,” ihlEEE International
Solid-State Circuits Conferenceol. 1, pp. 240-241,
2001.

K. Krewel, “Alpha ev7 processor: A high-performance
tradition continues,” Microprocessor Report April
2005.

S. V. Adve and K. Gharachorloo, “Shared memory con-
sistency models: a tutorial[EEE Computer vol. 29,
pp. 66—76, Dec. 1996.

J. R. Goodman, M. K. Vernon, and P. J. Woest,
“Efficent synchronization primitives for large-scale
cache-coherent multiprocessors,”Rmoceedings of the
Third International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (Boston, Massachusetts), pp. 64—75, 1989.

D. Tullsen, J. Lo, S. Eggers, and H. Levy, “Support-
ing fine-grain synchronization on a simultaneous multi-
threaded processor,” iRroceedings of the 5th Interna-
tionalSymposium on High Performance Computer Ar-
chitecture 1999.

S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter,
A. Chang, and W. S. Lee, “Exploiting fine-grain thread
level parallelism on the MIT multi-ALU processor,” in

ISCA pp. 306-317, 1998.

P. S. Barth, R. S. Nikhil, and Arvind, “M-structures: Ex-
tending a parallel, non-strict, functional languages with
state,” Tech. Rep. MIT/LCS/TR-327, MIT, 1991.

T. Shimada, K. Hiraki, and K. Nishida, “An architecture
of a data flow machien and its evaluation,” Drigest
of Papers, COMPCON Spring 84p. 486—490, IEEE,
1984,

G. M. Papadopoulos and K. R. Traub, “Multithread-
ing: A revisionist view of dataflow architectures,” in
Proceedings of the 18th Annual International Sympo-
sium on Computer ArchitecturgToronto, Ontario),
pp. 342-351, ACM SIGARCH and IEEE Computer So-
ciety TCCA, May 27-30, 1991Computer Architecture
News,19(3), May 1991.

J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M.
Tullsen, and S. J. Eggers, “Converting thread-level par-
allelism to instruction-level parallelism via simultane-
ous multithreading, ACM Trans. Comput. Systol. 15,

no. 3, pp. 322-354, 1997.

35

impact of issue-widt h in chip-multiprocessor cores,” in
International Conference on Paralllel Processjraf03.

L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen,
and K. Olukolun, “The stanford hydra CMREEE Mi-
cro, vol. 20, march/april 2000.

L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese, “Piranha: A scalable architec-
ture based on single-chip multiprocessing,” Rro-
ceedings of the 27th Annual International Sympo-
sium on Computer ArchitecturgVancouver, British
Columbia), pp. 282—-293, IEEE Computer Society and
ACM SIGARCH, June 12-14, 2000Computer Archi-
tecture News28(2), May 2000.

SPEC, “Spec CPU 2000 benchmark specifications.”
SPEC2000 Benchmark Release, 2000.

