
The WaveScalar Architecture

Steven Swanson Andrew Schwerin Martha Mercaldi
Andrew Petersen Andrew Putnam Ken Michelson

Mark Oskin Susan Eggers
Computer Science & Engineering

University of Washington
{swanson,schwerin,mercaldi,petersen,aputnam,ken,oskin,eggers }@cs.washington.edu

Abstract:

Silicon technology will continue to provide an ex-
ponential increase in the availability of raw transis-
tors. Effectively translating this resource into applica-
tion performance, however, is an open challenge that
conventional superscalar designs will not be able to
meet. We present WaveScalar as a scalable alternative
to conventional designs. WaveScalar is a dataflow in-
struction set and execution model designed for scalable,
low-complexity/high-performance processors. Unlike
previous dataflow machines, WaveScalar can efficiently
provide the sequential semantics imperative languages
require. To allow programmers to easily express paral-
lelism, WaveScalar supports pthread-style, coarse-grain
multithreading and dataflow-style, fine-grain threading.
In addition, it permits blending the two styles within an
application or even a single function.

To execute WaveScalar programs, we have designed
a scalable, tile-based processor architecture called the
WaveCache. As a program executes, the WaveCache
maps the program’s instructions onto its array of pro-
cessing elements (PEs). The instructions remain at their
processing elements for many invocations, and as the
working set of instructions changes, the WaveCache re-
moves unused instructions and maps new instructions in
their place. The instructions communicate directly with
one-another over a scalable, hierarchical on-chip inter-
connect, obviating the need for long wires and broadcast
communication.

This paper presents the WaveScalar instruction set
and evaluates a simulated implementation based on cur-
rent technology. For single-threaded applications, the
WaveCache achieves performance on par with conven-
tional processors, but in less area. For coarse-grain
threaded applications the WaveCache achieves nearly
linear speedup with up to 64 threads and can sus-

tain 7-14 multiply-accumulates per cycle on fine-grain
threaded versions of well-known kernels. Finally, we
apply both styles of threading to equake from spec2000
and speed it up by 9x compared to the serial version.
Keywords: WaveScalar, Dataflow computing, Multi-
threading

1 Introduction

It is widely accepted that Moore’s Law will hold for the
next decade. However, although more transistors will be
available, simply scaling up current architectures will
not convert them into commensurate increases in per-
formance [1]. This resulting gap between the increases
in performance we have come to expect and those that
larger versions of existing architectures will be able to
deliver will force engineers to search for more scalable
processor architectures.

Three problems contribute to this gap: (1) the ever-
increasing disparity between computation and commu-
nication performance – fast transistors but slow wires;
(2) the increasing cost of circuit complexity, leading to
longer design times, schedule slips, and more processor
bugs; and (3) the decreasing reliability of circuit tech-
nology, caused by shrinking feature sizes and contin-
ued scaling of the underlying material characteristics.
In particular, modern superscalar processor designs will
not scale, because they are built atop a vast infrastruc-
ture of slow broadcast networks, associative searches,
complex control logic, and centralized structures.

We propose a new instruction set architecture (ISA),
called WaveScalar [2], that addresses these challenges
by building on the dataflow execution model [3]. The
dataflow execution model is well-suited to running on
a decentralized, scalable processor, because it is inher-
ently decentralized. In this model, instructions execute
when their inputs are available, and detecting this condi-
tion can be done locally for each instruction. The global

coordination that the von Neumann model relies on, in
the form of a program counter, is not required. In addi-
tion, the dataflow model allows programmers and com-
pilers to express parallelism explicitly, instead of relying
on the underlying hardware (e.g., an out-of-order super-
scalar) to extract it.

WaveScalar exploits these properties of the dataflow
model, and also addresses a long standing deficiency
of dataflow systems. Previous dataflow systems could
not efficiently enforce the sequential memory seman-
tics that imperative languages such as C, C++, and Java
require. Instead they used special, dataflow languages
that limited their usefulness. A recent ISCA keynote ad-
dress [4] noted that if dataflow systems are to become a
viable alternative to the von Neumann status quo, they
must enforce sequentiality on memory operations with-
out severely reducing parallelism among other instruc-
tions. WaveScalar addresses this challenge with a mem-
ory ordering scheme, calledwave-ordered memory, that
efficiently provides the memory ordering that imperative
languages need.

Using this memory ordering scheme, WaveScalar
supports conventional single-threaded and pthread-style
multithreaded applications. It also efficiently supports
fine-grain threads that can consist of only a handful of
instructions. Programmers can combine these different
thread models in the same program or even in the same
function. Our data show that applying diverse styles of
threading to a single program can expose significant par-
allelism in code that would otherwise be difficult to fully
parallelize.

Exposing parallelism is only the first task. The pro-
cessor must then translate that parallelism into perfor-
mance. We exploit WaveScalar’s decentralized dataflow
execution model to design theWaveCache, a scal-
able, decentralized processor architecture for executing
WaveScalar programs. The WaveCache has no central
processing unit. Instead it consists of a sea of process-
ing nodes in a substrate that effectively replaces the cen-
tral processor and instruction cache of a conventional
system. The WaveCache loads instructions from mem-
ory and assigns them to processing elements for exe-
cution. The instructions remain at their processing ele-
ments for a large number, potentially millions, of invo-
cations. As the working set of instructions for the appli-
cation changes, the WaveCache evicts unneeded instruc-
tions and loads the necessary ones into vacant process-
ing elements.

This paper describes and evaluates the WaveScalar

ISA and WaveCache architecture. First, we describe
those aspects of WaveScalar’s ISA and the WaveCache
architecture that are required for executing single-
threaded applications, including the wave-ordered mem-
ory interface. We evaluate the performance of a small,
simulated WaveCache on several single-threaded appli-
cations. Our data demonstrate that this WaveCache per-
forms comparably to a modern out-of-order superscalar
design, but requires only∼38% as much silicon area.

Next, we extend WaveScalar and the WaveCache
to support conventional pthread-style threading. The
changes to WaveScalar include light-weight dataflow
synchronization primitives and support for multiple, in-
dependent sequences of wave-ordered memory opera-
tions. The multithreaded WaveCache achieves nearly
linear speedup on the six Splash2 parallel benchmarks
that we use.

Finally, we delve into WaveScalar’s dataflow under-
pinnings, the advantages they provide, and how pro-
grams can combine them conventional multi-threading.
We describe WaveScalar’s “unordered” memory inter-
face and show how it combines with fine-grain threading
to reveal substantial parallelism. Fully utilizing these
techniques requires a custom compiler which is not yet
complete, so we evaluate these two features by using
hand-coding three common kernels and rewriting part of
theequakebenchmark to use a combination of fine- and
coarse-grain threading styles. The results demonstrate
that these techniques speed up the kernels by between
16 and 240 times andequakeby a factor of 9 compared
to the serial versions.

The rest of this paper is organized as follows. Sec-
tions 2 and 3 describe the single-threaded WaveScalar
ISA and WaveCache architecture, respectively. Sec-
tion 4 then evaluates them. Section 5 describes
WaveScalar’s coarse-grain threading facilities and the
changes to the WaveCache that support them. Section 6
presents WaveScalar’s dataflow-based facilities that sup-
port fine-grain parallelism and illustrates how one can
combine both threading style to enhance performance.
Finally, Section 7 concludes.

2 Single-threaded WaveScalar

The dataflow model that WaveScalar uses is fundamen-
tally different than the von Neumann model that dom-
inates conventional designs, but both models accom-
plish many of the same tasks in order to execute sin-
gle threaded programs written in conventional program-
ming languages. For example, both must determine

2

which instructions to execute and provide a facility for
conditional execution; they must pass operands from
one instruction to one another and they must access
memory.

For many of these tasks, WaveScalar borrows from
previous dataflow machines. Its interface to memory,
however, is unique and is one of its primary contribu-
tions to dataflow computing. The WaveScalar mem-
ory interface provides an efficient method for encod-
ing memory ordering information in a dataflow model,
enabling efficient execution of programs written in im-
perative programming languages. Most earlier dataflow
machines could not efficiently execute codes written in
imperative languages, because they could not easily en-
force the memory semantics these programs require.

To provide context for our description, we first
describe how the von Neumann model accomplishes
the tasks outlined above and why the von Neumann
model is inherently centralized. Then we describe how
WaveScalar’s model accomplishes the same goals in a
decentralized manner and how WaveScalar’s memory
interface works. WaveScalar’s decentralized execution
model provides the basis for the decentralized, general
purpose hardware architecture in Section 3.

2.1 The von Neumann model

Von Neumann processors represent programs as a list of
instructions that reside in memory. A program counter
(PC) selects instructions for execution by stepping from
one memory address to the next, causing each instruc-
tion to execute in turn. Special instructions can mod-
ify the PC to implement conditional execution, function
calls, and other types of control transfer.

In modern von Neumann processors instructions
communicate with one another by writing and reading
values in the register file. After an instruction writes a
value into the register file, all subsequent instructions
that read the value are data dependent on the writing in-
struction.

To access memory, programs issue Load and Store
instructions. A key tenet of the von Neumann model is
the set of memory semantics it provides: that loads and
stores occur (or appear to occur) in the order in which
the PC fetched them. Enforcing this order is required
to preserve read-after-write, write-after-write, and write-
after-read dependences between instructions. Modern,
imperative languages, such as C, C++, or Java, provide
essentially identical memory semantics and rely on the
von Neumann architecture’s ability to implement those

semantics efficiently.
At its heart, the von Neumann model describes exe-

cution as a linear, centralized process. A single program
counter guides execution and there is always exactly one
instruction that, according to the model, should execute
next. This is both a strength and a weakness. On one
hand, it makes control transfer easy, tightly bounds the
amount of state the processor must maintain, and pro-
vides a simple set of memory semantics. History has
also demonstrated that constructing processors based on
the model is feasible (and extremely profitable!). On the
other hand, the model expresses no parallelism. While
the performance of its processors has improved expo-
nentially for over three decades, continued scalability is
uncertain.

2.2 WaveScalar’s ISA

The dataflow execution model has no PC to guide in-
struction fetch and memory ordering and no register file
to serve as a conduit of data values between dependent
instructions. Instead, it views instructions as nodes in
a dataflow graph that only execute after they have re-
ceived their input values. Memory operations execute in
the same data-driven fashion, which may result in their
being executed out of the program’s linear order. How-
ever, although the model provides no total ordering of
a program’s instructions, it does enforce the partial or-
ders that a program’s dataflow graph defines. Since in-
dividual partial orders are data-independent, they can be
executed in parallel, providing the dataflow model with
an inherent means of expressing parallelism of arbitrary
granularity. In particular, the granularity of parallelism
is determined by the length of a data-dependent path.
For all operations, data values are passed directly from
producer instructions to consumer instructions without
intervening accesses to a register file.

Dataflow’s advantages are its explicit expression of
parallelism among dataflow paths and its decentralized
execution model that obviates the need for a program
counter or any other centralized structure to control
instruction execution. However, these advantages do
not come for free. Control transfer is more expen-
sive in the dataflow model, and the lack of a total or-
der on instruction execution makes it difficult to en-
force the memory ordering that imperative languages re-
quire. WaveScalar handles control using the same tech-
nique as previous dataflow machines (described in Sec-
tion 2.2.2), but overcomes the problem of memory ac-
cess order with a novel architectural technique called

3

wave-ordered memory[2] (described in Section 2.2.5).
Wave-ordered memory essentially creates a “chain” of
dependent memory operations at the architectural level;
the hardware then guarantees that the operations execute
in the order the chain defines.

Below we describe the WaveScalar ISA in detail.
Much of the information is not unique to WaveScalar
and reflects its dataflow heritage. We present it here for
completeness and to provide a thorough context for the
discussion of memory ordering, which is WaveScalar’s
key contribution to dataflow instructions sets. Read-
ers already familiar with dataflow execution could skim
Sections 2.2.1, 2.2.2, and 2.2.4.

2.2.1 Program representation and execution

WaveScalar represents programs as dataflow graphs.
Each node in the graph is an instruction, and the arcs
between nodes encode static data dependences (i.e., de-
pendences that are known to exist at compile time) be-
tween instructions. Figure 1 shows a simple piece of
code, its corresponding dataflow graph, and the equiva-
lent WaveScalar assembly language.

The mapping between the drawn graph and the
dataflow assembly language is simple: each line of as-
sembly represents an instruction, and the arguments to
the instructions are dataflow edges. Outputs precede the
’←’. The assembly code resembles RISC-style assem-
bly but differs in two key respects. First, although the
dataflow edges syntactically resemble register names,
they do not correspond to a specific architectural en-
tity. Consequently, like pseudo-registers in a compiler’s
program representation, there can be an arbitrary num-
ber of them. Second, the order of the instructions does
not affect their execution, since they will be executed in
dataflow fashion. Each instruction does have a unique
address, however, used primarily for specifying func-
tion call targets (see Section 2.2.4). As in assembly lan-
guages for von Neumann machines, we can use labels
(e.g.,begin in the figure) to refer to specific instruc-
tions. We can also perform arithmetic on labels. For
instancebegin +1 would be the SUBTRACT instruc-
tion.

Unlike the PC-driven von Neumann model, execution
of the dataflow graph is data-driven. Instructions exe-
cute according to thedataflow firing rule, which stipu-
lates that an instruction can fire at any time after values
arrive on all of its inputs. Instructions send the values
they produce along arcs in the program’s dataflow graph
to their consumer instructions, causing them to fire in

turn. In Figure 1, once inputsA andB are ready, the
ADD can fire and produce the left-hand input to the DI-
VIDE. Likewise, onceC is available, the SUBTRACT

computes the other input to the DIVIDE instruction. The
DIVIDE then executes and producesD.

The dataflow firing rule is inherently decentralized,
because it allows each instruction to act autonomously,
waiting for inputs to arrive and generating outputs. Por-
tions of the dataflow graph that are not explicitly data-
dependent do not communicate at all.

2.2.2 Control flow

Dataflow’s decentralized execution algorithm makes
control transfers more difficult to implement. Instead
of steering a single PC through the executable, so
the processor executes one path instead of the other,
WaveScalar steers values into one part of the dataflow
graph and prevents them from flowing into another. It
can also use predication to perform both computations
and later discard the results on the wrong path. In both
cases, the dataflow graph must contain a control instruc-
tion for each live value, which is the source of some
overhead in the form of extra static instructions.

WaveScalar uses STEER instructions to steer values to
the correct path andφ instructions for predication. The
STEER [5] instruction takes an input value and a boolean
output selector. It directs the input to one of two possi-
ble outputs depending on the selector value, effectively
steering data values to the instructions that should re-
ceive them. Figure 2(b) shows a simple conditional im-
plemented with STEER instructions. STEER instructions
correspond most directly to traditional branch instruc-
tions, and they are required for implementing loops.
In many cases a STEER instruction can be combined
with a normal arithmetic operation. For example, ADD-
AND-STEER takes three inputs: a predicate and two
operands, and steers the result depending on the pred-
icate. WaveScalar provides a steering version for all 1-
and 2-input instructions.

The φ instruction [6] takes two input values and a
boolean selector input and, depending on the selector,
passes one of the inputs to its output.φ instructions are
analogous to conditional moves and provide a form of
predication. They are desirable, because they remove
the selector input from the critical path of some compu-
tations and therefore increase parallelism. They are also
wasteful, however, because they discard the unselected
input. Figure 2(c) showsφ instructions in action.

4

D = (A + B) / (C - 2)

+ - 2

÷

A B C

D

.label begin

Add temp_1 ← A, B

Sub temp_2 ← C, #2

Div D ← temp_1, temp_2

(a) (b) (c)
Figure 1: A Simple dataflow fragment: A simple program statement (a), its dataflow graph (b), and the corre-
sponding WaveScalar assembly (c). The order of the WaveScalar assembly statements is unimportant, since they
will be executed in dataflow fashion.

if (A > 0)
D = C + B;

else
D = C - E;

F = D + 1; + -

S S

>0

S

+1

C B E

D D

A

F

+ ->0

C B EA

φ

+1

F

D

(A) (b) (c)
Figure 2:Implementing control in WaveScalar: An IF-THEN-ELSE construct (a) and equivalent dataflow repre-
sentations. In (b) STEER instructions (triangles labeled ‘s’) ensure that only one side of the branch executes, while
(c) computes both sides and aφ instruction selects the result to use.

5

2.2.3 Loops and waves

The STEER instruction may appear to be sufficient for
WaveScalar to express loops, since it provides a ba-
sic branching facility. However, in addition to branch-
ing, dataflow machines must also distinguish dynamic
instances of values from different iterations of a loop.
Figure 3(a) shows a simple loop that both illustrates the
problem and WaveScalar’s solution.

Execution begins when data values arrive at the
CONST instructions, which inject zeros into the body of
the loop, one forsum and one fori (Figure 3(b)). On
each iteration through the loop, the left side updatessum
and the right side incrementsi and checks whether it is
less than 5. For the first 5 iterations (i = 0 . . . 4), p is
true and the STEER instructions steer the new values for
sum andi back into the loop. On the last iteration,p is
false, and the final value ofsum leaves the loop via the
sum out edge. Sincei is dead after the loop, the false
output of the right-side STEER instruction produces no
output.

The problem arises because the dataflow execution
model makes no guarantee about how long it takes a data
value to flow along a given dataflow arc. Ifsum first
takes a long time to reach the ADD instruction, the right
side portion of the dataflow graph could run ahead of the
left side, generating multiple values oni backedge
and p. How would the ADD and STEER instructions
on the left know which of these values to use? In this
particular case, the compiler could solve the problem by
unrolling the loop completely, but this is not always pos-
sible or wise.

Previous dataflow machines provided one of two so-
lutions. In the first,static dataflow[3, 7], only one value
is allowed on each arc at any time. In a static dataflow
system, the dataflow graph as shown works fine. The
processor would use back-pressure to prevent the COM-
PARE and INCREMENT instructions from producing a
new value before the old values had been consumed.
While this restriction resolves the ambiguity between
different value instances, it also reduces parallelism by
preventing multiple iterations of a loop from executing
simultaneously and makes recursion difficult to support.

A second model,dynamic dataflow[8, 9, 10, 11, 12],
tags each data value with an identifier and allows mul-
tiple values to wait at the input to an instruction. The
dataflow firing rule is modified so that an instruction
fires only when tokens with matching tags are available

on all its inputs1. The combination of a data value
and its tag is called atoken. WaveScalar is a dynamic
dataflow architecture.

Dynamic dataflow architectures differ in how they
manage and assign tags to values. In WaveScalar
the tags are calledwave-numbers[2]. We denote a
WaveScalar token with wave-numberW and valuev as
W .v. Instead of assigning differentwave-numbersto
different instances of specific instructions (as most dy-
namic dataflow machines did), WaveScalar assigns them
to compiler-delineated portions of the dataflow graph
calledwaves. Waves are similar to hyperblocks [13], but
they are more general, since they can contain control-
flow joins and can have more than one entrance. They
cannot contain loops. Figure 3(c) shows the example
loop divided into waves (as shown by the dotted lines).
At the top of each wave is a set of WAVE-ADVANCE

instructions (the small diamonds), each of which incre-
ments the wave number of the value that passes through
it.

Assume the code before the loop is wave number 0.
When the code executes, the two CONST instructions
will produce0.0 (wave number 0, value 0). The WAVE-
ADVANCE instructions will take these as input and each
will output 1.0, which will propagate through the body
of the loop as before. At the end of the loop, the right-
side STEER instruction will produce1.1 and pass it back
to the WAVE-ADVANCE at the top of its side of the loop,
which will then produce2.1. A similar process takes
place on the left side of the graph. After 5 iterations the
left STEER instruction produces the final value ofsum:
5.10, which flows directly into the WAVE-ADVANCE at
the beginning of the follow-on wave. With the WAVE-
ADVANCE instructions in place, the right side can run
ahead safely, since instructions will only fire when the
wave numbers in the operand tags match. More gen-
erally, waves numbers allow instructions from different
wave instances, in this case iterations, to execute simul-
taneously.

In addition to allowing WaveScalar to extract paral-
lelism, wave-numbers also play a key role in enforcing
memory ordering (Section 2.2.5).

1The execution model does not specify where the data values are
stored or how matching takes place. Efficiently storing and matching
input tokens is a key challenge in dynamic dataflow architecture, and
Section 3 discusses it.

6

sum = 0;
for(i = 0; i < 5; i++)

sum += i;

 const #0 const #0

+ +1

<5

S S

sum_first

sum_increment

sum_out

sum_backedge

i_first

i_increment

p

i_backedge

trigger

 const #0 const #0

+ +1

<5

S S

WAWA

WA

(a) (b) (c)

waves

Figure 3:Loops in WaveScalar: A naive, slightly broken loop implementation (b), and the correct WaveScalar
implementation (c).

2.2.4 Function calls

Function calls on a von Neumann processor are fairly
simple – the caller saves “caller saved” registers, pushes
function arguments and the return address onto the stack
(or stores them in specific registers), and then uses a
jump instruction to set the PC to the address of the be-
ginning of the called function, triggering its execution.

Being a dataflow architecture, WaveScalar must fol-
low a slightly different convention. Since it has no reg-
isters, it does not need to preserve register values. It
must, however, explicitly pass arguments and a return
address to the function and trigger its execution. Passing
arguments creates a data dependence between the caller
and the callee. For indirect functions, these dependences
are not statically known and therefore the static dataflow
graph of the application does not contain them. Instead,
WaveScalar provides a mechanism to send a data value
to an instruction at a computed address. The instruction
that allows this is called INDIRECT-SEND.

INDIRECT-SEND takes as input the data value to send,
a base address for the destination instruction (usually a
label), and the offset from that base (as an immediate).
For instance, if the base address is 0x1000, and the off-
set is 4, INDIRECT-SEND sends the data value to the in-
struction at 0x1004.

Figures 4 contains the dataflow graph for a small
function and a call site. Dashed lines in the graphs rep-
resent the dependences that exist only at run time. The

LANDING-PAD instruction, as its name suggests, pro-
vides a target for a data value sent via INDIRECT-SEND.
To call the function, the caller uses three INDIRECT-
SEND instructions: two for the argumentsA andB and
one for the return address, which is the address of the
return LANDING-PAD (label ret in the figure). The
INDIRECT-SEND instructions use the address offoo
and their immediate values to compute the addresses of
instructions they will send their values to.

When the values arrive atfoo , the LANDING-PAD

instructions pass them to WAVE-ADVANCE instructions
that, in turn, forward them into the function body (the
callee immediately begins a new wave). Once the func-
tion is finished, perhaps having executed many waves,
foo uses a single INDIRECT-SEND to return the re-
sult to the caller’s LANDING-PAD instruction. After the
function call, the caller starts a new wave using a WAVE-
ADVANCE.

2.2.5 Memory ordering

Enforcing imperative languages memory semantics is
one of the key challenges that have prevented dataflow
processing from becoming a viable alternative to the von
Neumann model. Since dataflow ISAs only enforce the
static data dependences in a program’s dataflow graph,
they have no mechanism that ensures that memory op-
erations occur in program order. Figure 5 shows a
dataflow graph that demonstrates the dataflow memory
ordering problem. In the graph the Load must execute

7

 const #foo const #ret

 ind_send #0 ind_send #1 ind_send #2

landing_pad

landing_pad

+

 ind_send #0

A B

landing_pad landing_pad

return_addr

A B

foo:

WA WAWA

result

WA

ret:

int foo(int A, int B) {
return A + B;

}
...
result = foo(A,B);

(a) (b)

Figure 4: A function call: The dataflow graph (b) for a call to a simple function (a). The left-hand side of the
dataflow graph uses INDIRECT-SEND instructions to call functionfoo on the right. The dashed lines show data
dependences that WaveScalar must resolve at runtime. The immediate values on the trio of INDIRECT-SEND

instructions are offsets from the first instruction infoo .

after the Store to ensure correct execution should the two
memory addresses be identical. However, the dataflow
graph does not express this implicit dependence between
the two instructions (the dashed line). WaveScalar must
provide an efficient mechanism to encode this implicit
dependence in order to support imperative languages.

Wave-ordered memory solves the dataflow memory
ordering problem, using the waves defined in Sec-
tion 2.2.3. Within each wave, the compiler annotates
memory access instructions to encode the ordering con-
straints between them. Since wave numbers increase as
the program executes, they provide an ordering of the
executing waves. Taken together, the coarse-grain order-
ing between waves (via their wave numbers), combined
with the fine-grain ordering within each wave, provides
a total order on all the memory operations in the pro-
gram.

This section presents wave-ordered memory. Once
we have more fully described waves and discussed the
annotation scheme for operations within a wave, we de-
scribe how the annotations provide the necessary order-
ing. Then we briefly discuss an alternative solution to
the dataflow memory ordering problem.

Wave-ordering Annotations Wave-ordering annota-
tions order the memory operations within a single wave.
The annotations must guarantee two properties. First,
they must ensure that the memory operations within a

Load

A[i+k] = x;

y = A[i];

+

Store

+

+

A ikx

y

j

Figure 5: Program order: The dashed line represents
an implicit, potential data dependence between the Store
and Load instructions that conventional dataflow in-
struction sets have difficulty expressing. Without the
dependence, the dataflow graph provides no ordering re-
lationship between the memory operations.

8

Load <.,0,1>
Store <0,1,2>
Load <1,2,.>

Sequence #

Predecessor

Successor

Figure 6: Simple wave-ordered annotations: The
three memory operations must execute in the order
shown. The predecessor, sequence, and successor num-
bers encode the ordering constraints. The ’.’ symbols
indicate that operations 0 and 2 are the first and last op-
erations in the wave.

wave execute in the correct order. Wave-ordered mem-
ory achieves this by giving each memory operation in
a wave asequence number. Sequence numbers increase
on all paths through a wave, ensuring that if one memory
operation has a larger sequence number than another, the
one with the larger number comes later in program or-
der. Figure 6 shows a very simple series of memory
operations and their annotations. The sequence number
is the second of the three numbers in angle brackets.

Second, wave-ordered memory must detect when all
previous memory operations that will execute have done
so. In the absence of branches, this detection is sim-
ple: since all the memory operations in a wave will
eventually execute, the memory system simply waits for
memory operations with all lower sequence numbers to
complete. Control flow complicates this, because it al-
lows some of the memory operations to execute (those
on the taken paths) while others do not (those on the
non-taken paths). To accommodate this, Wave-ordered
memory must distinguish between operations that take a
long time to fire and those that never will. To ensure that
all the memory operations on the correct path are exe-
cuted, each memory operation also carries the sequence
number of its previous and subsequent operations in pro-
gram order. Figure 6 includes these annotations as well.
The predecessor number is the first number between the
brackets, and the successor number is the last. For in-
stance, the Store in the figure is preceded by a Load with
sequence number 0 and followed by the Load with se-
quence number 2, so its annotations are< 0, 1, 2 >.
The ’.’ symbols indicate that there is no predecessor of
operation 0 and no successor of operation 2.

At branch (join) points the successor (predecessor)

number is unknown at compile time, because control
may take one of two paths. In these cases a ’wildcard’
symbol, ’?’, takes the place of the successor (predeces-
sor) number. The left-hand portion of Figure 7 shows
a simpleIF-THEN-ELSE control flow graph that demon-
strates how the wildcard is applied; the right-hand por-
tion depicts how memory operations on the taken path
are sequenced, described below.

Intuitively, the annotations allow the memory system
to “chain” memory operations together. When the com-
piler generates and annotates a wave, there are many po-
tential chains of operations through the wave, but only
one chain (i.e., one control path) executes each time the
wave executes (i.e., during one dynamic instance of the
wave). For instance, the right side of Figure 7 shows the
sequence of operations along one path through the code
on the left. From one operation to the next, either the
predecessor and sequence numbers or the successor and
sequence numbers match (the ovals in the figure).

In order for the chaining to be successful, the com-
piler must ensure that there is a complete chain of mem-
ory operations along every path through a wave. The
chain must begin with an operation whose sequence
number is 0 and end with successor number ‘.’, indi-
cating there is no successor.

It is easy to enforce this condition on the beginning
and the end of the chain of operations, but ensuring
that all possible changes through the wave are complete
is more difficult. Figure 8(a) shows an example. The
branch and join mean that the instruction 0’s successor
and instructions 2’s predecessor are both ‘?’. As a result,
the memory system cannot construct the required chain
between operations 0 and 2, if control takes the right-
hand path. To create a chain, the compiler inserts a spe-
cial MEMORY-NOP instruction between 0 and 2 on the
right-hand path (Figure 8(b)). The MEMORY-NOP has
no effect on memory but does send a request to the mem-
ory interface to provide the missing link in the chain.
Adding MEMORY-NOPs introduces a small amount of
overhead, usually less than 3%.

Ordering Rules We can now demonstrate how
WaveScalar use wave numbers and the annotations de-
scribed above to construct a total ordering over all mem-
ory operations in a program. Figure 7 shows a simple
example. Control takes the right-hand path resulting
in three memory operations executing. At right, ovals
show the links between the three operations that form
them into a chain. The general rule is that a link ex-

9

Load <.,0,?>

Store <0,1,3> Store <0,2,3>

Load <?,3,.>

Load <.,0,?>

Store <0,2,3>

Load <?,3,.>

Matches forming
a chain

Figure 7:Wave-ordering and control: Dashed boxes and lines denote basic blocks and control paths. The right
hand side of the figure shows the instructions that actually execute when control takes the right-hand path (bold
lines and boxes) and the matches between their annotations that define program order.

Load <.,0,?>

Store <0,1,2>

Load <?,2,.>

Load <.,0,?>

Store <0,1,3>

Load <?,3,.>

Nop <0,2,3>

(a) (b)

Figure 8:Resolving ambiguity: In (a), the chaining is impossible along the right-side path. In (b), the addition of
a MEMORY-NOP allows chaining.

10

ists between two operations if the successor number of
the first operation matches the sequence number of the
second or the sequence number of the first matches the
predecessor number of the second.

Since the annotations only provide ordering with
a wave, WaveScalar uses wave numbers to order the
waves themselves. The WaveScalar processor must en-
sure that all the operations from previous waves com-
plete before the operations in a subsequent wave can be
applied to memory. Combining the global inter-wave
ordering with the local intra-wave ordering provides a
total ordering on all operations in the program.

Expressing parallelism The basic version of wave-
ordered memory described above can be easily extended
to express parallelism between memory operations, al-
lowing consecutive Loads to execute in parallel or out-
of-order.

The annotations and rules define a linear ordering of
memory operations, ignoring potential parallelism be-
tween Loads. Wave-ordered memory can express this
parallelism by providing a fourth annotation called arip-
ple number. The ripple number of a Store is equal to its
sequence number. A Load’s ripple number points to the
Store that most immediately precedes it. To compute the
ripple number for a Load, the compiler collects the set of
all Stores that precede the Load on any path through the
wave. The Load’s ripple number is the maximum of the
Stores’ sequence numbers. Figure 9 shows a sequence
of Load and Store operations with all four annotations.

To accommodate ripples in the ordering rules we al-
low a Load to execute if it is next in the chain operations
(as before),or if the ripple number of the Load is less
than or equal to the sequence number of a previously
executed operation (a Load or a Store). MEMORY-NOPs
are treated like Loads.

Figure 9 shows the two different types of links that
can allow an operation to fire. The solid oval between
the bottom four operations are similar to those in Fig-
ure 7. The top two dashed ovals depict ripple-based
links that allow the two Loads to execute in parallel.

Figure 10 contains a more sophisticated example. If
control takes the right-side branch, Loads 1 and 4-6 can
execute in parallel once Store 0 has executed, because
they all have ripple numbers of 0. Load 7 must wait
for one of Loads 4-6 execute, because the ripple num-
ber of operation 7 is 2 and Loads 4-6 all have sequence
numbers greater than 2. If control takes the left branch,
Loads 3 and 7 can execute as soon as Store 2 has exe-

Store <.,0,1>.0

Load <0,1,2>.0

Load <1,2,3>.0

Store <2,3,4>.3

Store <4,5,.>.5

Load <3,4,5>.3
Normal links

Ripple-based
links

ripple number

Figure 9: Simple ripples: A single wave containing a
single basic block. The ripple annotations allow loads
1 and 2 to execute in either order or in parallel, while
the stores must wait for all previous loads and stores to
complete. Ovals depict the links formed between opera-
tions.

Load <0,1,?>.0

Store <1,2,3>.2

Load <?,7,.>.2

Load <1,4,5>.0

Load <2,3,7>.2 Load <4,5,6>.0

Store <.,0,1>.0

Load <5,6,7>.0

Figure 10:Ripples and control: Branches make ripple
behavior more complicated. If control takes the right-
hand path, most of loads (1, and 4-6) can execute in any
order, but load 7 must wait for an operation with a se-
quence number greater than 2.

11

cuted.

2.2.6 Other approaches

Wave-ordered memory is not the only way to provide the
required memory ordering. Researchers have proposed
an alternative scheme that makes implicit memory de-
pendences explicit by adding a dataflow edge between
each memory operation and the next [14, 15]. While
this “token-passing” scheme is simple, it does not per-
form as well as wave-ordered memory; our experiments
have found that wave-ordered memory expresses twice
as much memory parallelism as token passing [16].

Despite this, token-passing is very useful in some
situations, because it gives the programmer or com-
piler complete control over memory ordering. If very
good memory aliasing is available, the programmer
or compiler can express parallelism directly by judi-
ciously placing dependences only between those mem-
ory operations that must actually execute sequentially.
WaveScalar provides a simple token-passing facility for
just this purpose (Section 6).

2.3 Discussion

The WaveScalar instruction set this section describes is
sufficient to execute single-threaded applications writ-
ten in conventional imperative programming languages.
The instruction set is slightly more complex than a con-
ventional RISC ISA, but we have not found the com-
plexity difficult for the programmer or the compiler to
handle.

In return for the complexity, WaveScalar provides
three significant benefits.

First, wave-ordered memory allows WaveScalar to
efficiently provide the semantics that imperative lan-
guages require and to express parallelism among
Load operations. Second, WaveScalar can express
instruction-level parallelism explicitly, while still main-
taining these conventional memory semantics. Third,
WaveScalar’s execution model is distributed. Only in-
structions that must pass each other data communicate.
There is no centralized control point.

In the next section we describe a microarchitecture
that implements the WaveScalar ISA. We find that, in
addition to increasing instruction-level parallelism, the
WaveScalar instruction set allows the microarchitecture
to be substantially simpler than a modern, out-of-order
superscalar.

3 A WaveCache architecture for single-threaded
programs

WaveScalar’s overall goal is to enable an architecture
that avoids the scaling problems described in the in-
troduction. With the decentralized WaveScalar ISA in
hand, our task is to develop a decentralized, scalable ar-
chitecture to match. In addition to scaling challenges,
the WaveCache also must address additional challenges
specific to WaveScalar. The WaveCache must efficiently
implement the dataflow firing rule and provide storage
for multiple (perhaps many) instances of data values
with different tags. It must also provide an efficient
hardware implementation of wave-ordered memory.

This section describes a tile-based WaveScalar archi-
tecture, called theWaveCache, that addresses these chal-
lenges. The WaveCache comprises everything, except
main memory, required to run a WaveScalar program.
It contains a scalable grid of simple, identical dataflow
processing elements that are organized hierarchically to
reduce operand communication costs. Each level of
the hierarchy uses a separate communication structure:
high-bandwidth, low-latency systems for local commu-
nication, and slower, narrower communication mecha-
nisms for long distance communication.

As we will show, the resulting architecture directly
addresses two of the challenges we outlined in the intro-
duction. First, the WaveCache contains no long wires.
In particular, as the size of the WaveCache increases, the
length of the longest wires do not. Second, the Wave-
Cache architecture scales easily from small designs suit-
able for executing a single thread to much larger designs
suited to multithreaded workloads (See Section 5). The
larger designs contain more tiles, but the tile structure,
and therefore, the overall design complexity does not
change. The final challenge mentioned in the introduc-
tion, defect and fault tolerance, is the subject of ongo-
ing research. The WaveCache’s decentralized, uniform
structure suggests that it would be easy to disable faulty
components to tolerate manufacturing defects.

We begin by summarizing the WaveCache’s design
and operation at a high level in Section 3.1. Next, Sec-
tions 3.2 to 3.6 provide a more detailed description of
its major components and how they interact. Section 3.7
describes a synthesizable RTL model that we use, in
combination with simulation studies, to provide the spe-
cific architectural parameters for the WaveCache we de-
scribe. Section 4 evaluates the design in terms of perfor-
mance and the amount of area it requires.

12

PE

Cluster

DomainPod

L2

L2
L2

L2

L2 L2

Net-
work

D$
S
B

D$

D$

D$

Figure 11:The WaveCache:The hierarchical organi-
zation of the microarchitecture of the WaveCache.

3.1 WaveCache architecture overview

Several recently proposed architectures, including the
WaveCache, take a tile-based approach to addressing
the scaling problems outlined in the introduction [17,
18, 19, 20, 21, 15]. Instead of designing a monolithic
core that comprises the entire die, tiled processors cover
the die with hundreds or thousands of identical tiles,
each of which is a complete, though simple, process-
ing unit. Since they are less complex than the mono-
lithic core and are replicated across the die, tiles more
quickly amortize design and verification costs. Tiled ar-
chitectures also generally compute under decentralized
control, contributing to shorter wire lengths. Finally,
they can be designed to tolerate manufacturing defects
in some portion of the tiles.

In the WaveCache, each tile is called acluster (Fig-
ure 11). A cluster contains four identicaldomains, each
with eight identical processing elements (PEs). In ad-
dition, each cluster has a four-banked L1 data cache,
wave-ordered memory interface hardware, and a net-
work switch for communicating with adjacent clusters.

From the programmer’s perspective, every static in-
struction in a WaveScalar binary has a dedicated pro-
cessing element. Clearly, building an array of clusters
large enough to give each instruction in an entire ap-
plication its own PE is impractical and wasteful, so, in
practice, we dynamically bind multiple instructions to a
fixed number of PEs, each of which can hold up to 64
instructions. Then, as the working set of the application
changes, the WaveCache replaces unneeded instructions
with newly activated ones. In essence, the PEscache
the working set of the application, hence the WaveCache

#0

#0

+

+1

<5 S

S

Figure 12:Mapping instruction into the WaveCache:
The loop in Figure 3(c) mapped onto two WaveCache
domains. Each large square is a processing element.

moniker.
Instructions are mapped to and placed in PEs dynami-

cally as a program executes. The mapping algorithm has
two often conflicting goals: to place dependent instruc-
tions near each other (e.g., in the same PE) to minimize
producer-consumer operand latency, and to spread in-
dependent instructions out across several PEs to exploit
parallelism. Figure 12 illustrates how the WaveScalar
program in Figure 3(c) can be mapped into two domains
in the WaveCache. To minimize operand latency, the
entire loop body has been placed in a single domain.

A processing element’s chief responsibility is to im-
plement the dataflow firing rule and execute instructions.
Each PE contains a functional unit, specialized memo-
ries to hold operands, and logic to control instruction
execution and communication. It also contains buffering
and storage for several different static instructions. A PE
has a five-stage pipeline, with bypass networks that al-
low back-to-back execution of dependent instructions at
the same PE. Two aspects of the design warrant special
notice. First, it avoids a large, centralized, associative
tag matching store found on some previous dataflow ma-
chines [9]. Second, although PEs dynamically schedule
execution, the scheduling hardware is dramatically sim-
pler than a conventional dynamically scheduled proces-
sor. Section 3.2 describes the PE design in more detail.

To reduce communication costs within the grid, PEs
are organized hierarchically along with their communi-
cation infrastructure (Figure 11). They are first coupled
into pods; PEs within a pod snoop each others’ ALU
bypass networks and share instruction scheduling infor-
mation, and therefore achieve the same back-to-back ex-
ecution of dependent instructions as a single PE. The
pods are further grouped intodomains; within a domain,
PEs communicate over a set of pipelined buses. The four
domains in a cluster communicate over a local switch.
At the top level, clusters communicate over an on-chip

13

interconnect built from the network switches in the clus-
ters.

PEs access memory by sending requests to the mem-
ory interface in their local cluster. If possible, the lo-
cal L1 cache provides the data. Otherwise, it initiates
a conventional cache coherence request to retrieve the
data from the L2 cache (located around the edge of the
array of clusters, along with the coherence directory) or
the L1 cache that currently owns the data.

A single cluster, combined with an L2 cache and
traditional main memory, is sufficient to run any
WaveScalar program, albeit with a possibly high Wave-
Cache miss rate as instructions are swapped in and out of
the small number of available PEs. To build larger and
higher performing machines, multiple clusters are con-
nected by an on-chip network. A traditional directory-
based protocol with multiple readers and single writer
maintains cache coherence.

3.2 The PE

At a high level, the structure of a PE pipeline resembles
a conventional five-stage, dynamically scheduled execu-
tion pipeline. The biggest difference between the two is
that the PE’s execution is entirely data-driven. Instead of
executing instructions provided by a program counter, as
you find on von Neumann machines, values (i.e., tokens)
arrive at a PE destined for a particular instruction. The
arrival of all of an instruction’s input values triggers its
execution – the essence of dataflow execution.

Our main goal in designing the PE was to meet our
cycle-time goal while still allowing dependent instruc-
tions to execute on consecutive cycles. Pipelining was
relatively simple. Back-to-back execution, however,
was the source of significant complexity.

The PE’s pipeline stagers are:

I NPUT: Operand messages arrive at the PE either
from another PE or from itself (via the ALU bypass net-
work). The PE may reject messages if too many arrive
in one cycle; the senders will then retry on a later cycle.

M ATCH : After they leave INPUT, operands enter the
matching table, where tag matching occurs. Cost-
effective matching is essential to an efficient dataflow
design and has historically been an impediment to more
effective dataflow execution [9]. The key challenge in
designing the WaveCache matching table was emulating
a potentially infinite table with a much smaller physi-
cal structure. This problem arises, because WaveScalar
is a dynamic dataflow architecture, and places no limit

on the number of dynamic instances of a static instruc-
tion that may reside in the matching table, waiting for
input operands to arrive. To address this challenge, the
matching table is implemented as a specialized cache for
a larger in-memory matching table, a common dataflow
technique [9, 8].

The matching table is associated with a second,
smaller tracker board, which determines when an in-
struction has a complete set of inputs, and is therefore
ready to execute. When this occurs, the instruction
moves into the scheduling queue.

DISPATCH : The PE selects an instruction from the
scheduling queue, reads its operands from the matching
table and forwards them to EXECUTE. If the destination
of the dispatched instruction is local, it speculatively is-
sues the consumer instruction to the scheduling queue,
enabling its execution on the next cycle.

EXECUTE : In most cases EXECUTE executes an in-
struction and sends its results to OUTPUT, which broad-
casts it over the bypass network. However, there are
two cases in which execution will not occur. First, if an
instruction was dispatched speculatively and one of its
operands has not yet arrived, the instruction is squashed.
Second, if OUTPUT is full, EXECUTE stalls until space
becomes available.

OUTPUT: Instruction outputs are sent via the output
bus to their consumer instructions, either at this PE or a
remote PE. The output buffer broadcasts the value on the
PE’s broadcast bus. In the common case, the consumer
PE within that domain accepts the value immediately. It
is possible, however, that the consumer cannot handle
the value that cycle and will reject it. The round-trip to
send the value and receive an ACK/NACK reply takes
four cycles. Rather than have the data value occupy the
output register for that period, the PE assumes it will
be accepted, moving it into its 4-entryreject buffer, and
inserts a new value into the output buffer on the next
cycle. If an operand ends up being rejected, it is fed back
into the output queue to be sent again to the destinations
that rejected it. When all the receivers have accepted the
value, the reject buffer discards it.

Figure 13 illustrates how instructions from a sim-
ple dataflow graph (on the left side of the figure) flow
through the WaveCache pipeline. It also illustrates how
the bypass network allows instructions to execute on
consecutive cycles. In the diagram,X[n] is thenth
input to instructionX. Five consecutive cycles are de-
picted; before the first of these, one input for each of in-

14

structionsA andB has arrived and reside in the match-
ing table. The “clouds” in the dataflow graph represent
operands that were computed by instructions at other
processing elements and have arrived via the input net-
work.
Cycle 0: (at left in Figure 13) OperandA[0] arrives and
INPUT accepts it.
Cycle 1: MATCH writes A[0] into the matching table
and, because both its inputs are present, placesA into
the scheduling queue.
Cycle 2: DISPATCH choosesA for execution and reads
its operands from the matching table. At the same time,
it recognizes thatA’s output is destined forB. In prepa-
ration for this producer-consumer handoff,B is inserted
into the scheduling queue.
Cycle 3: DISPATCH readsB[0] from the matching ta-
ble. EXECUTE computes the result ofA, which becomes
B[1].
Cycle 4: EXECUTE computes the result of instruction
B, usingB[0] from DISPATCHandB[1] from the bypass
network.
Cycle 5 (not shown): OUTPUT will sendB’s result to
instructionZ.

The logic in MATCH and DISPATCH is the most com-
plex part of the entire WaveCache architecture, and most
of it is devoted to allowing back-to-back execution of
dependent instructions while achieving our cycle time
goal.

3.3 The WaveCache interconnect

The previous section described the execution resource
of the WaveCache, the PE. This section will detail how
PEs on the same chip communicate. PEs send and
receive data using a hierarchical, on-chip interconnect
(Figure 14). There are four levels in this hierarchy:
intra-pod, intra-domain, intra-cluster and inter-cluster.
While the purpose of each network is the same – trans-
mission of instruction operands and memory values –
their designs vary significantly. We will describe the
salient features of these networks in the next four sub-
sections.

3.3.1 PEs in a Pod

The first level of interconnect, the intra-pod intercon-
nect, enables two PEs to share scheduling hints and
computed results. Merging a pair of PEs into a pod
consequently provides lower latency communication be-
tween them than using the intra-domain interconnect
(described below). Although PEs in a pod snoop each

others bypass networks, the rest of their hardware re-
mains partitioned, i.e., they have separate matching ta-
bles, scheduling and output queues, etc.

The decision to integrate pairs of PEs together is a re-
sponse to two competing concerns: we wanted the clock
cycle to be shortand instruction-to-instruction commu-
nication to take as few cycles as possible. To reach our
cycle-time goal, the PE and the intra-domain intercon-
nect (described next) had to be pipelined. This increased
average communication latency and reduced perfor-
mance significantly. Allowing pairs of PEs to commu-
nicate quickly brought the average latency back down
without significantly impacting cycle time. Tightly in-
tegrating more PEs would increase complexity signif-
icantly, and our data showed that the gains in perfor-
mance were small.

3.3.2 The intra-domain interconnect

PEs communicate with PEs in other pods over an intra-
domain interconnect. In addition to the eight PEs in
the domain, the intra-domain interconnect also connects
two pseudo-PEsthat serve as gateways to the memory
system (the MEM pseudo-PE) and the other PEs on the
chip (the NET pseudo-PE). The pseudo-PEs’ interface to
the intra-domain network is identical to a normal PE’s.

The intra-domain interconnect is broadcast-based.
Each of the eight PEs has a dedicated result bus that
carries a single data result to the other PEs in its do-
main. Each pseudo-PE also has a dedicated output
bus. PEs and pseudo-PEs communicate over the intra-
domain network using a garden variety ACK/NACK net-
work.

3.3.3 The intra-cluster interconnect

The intra-cluster interconnect provides communication
between the four domains’ NET pseudo-PEs. It also
uses a ACK/NACK network similar to that of the intra-
domain interconnect.

3.3.4 The inter-cluster interconnect

The inter-cluster interconnect is responsible for all long-
distance communication in the WaveCache. This in-
cludes operands traveling between PEs in distant clus-
ters and coherence traffic for the L1 caches.

Each cluster contains an inter-cluster network switch,
each of which routes messages between six input/output
ports: four of the ports lead to the network switches in
the four cardinal directions, one is shared among the
four domains’ NET pseudo-PEs, and one is dedicated
to the store buffer and L1 data cache.

15

A

B

Z

A[0] A[1]

B[0]

B

B[0]

Z[0]

A[0] A[1]

B[1]

B[0]

B[1]=A[0]+A[1]

B[0]

sched. queue

In
pu

t
M

at
ch

Di
sp

at
ch

Ex
ec

ut
e

O
ut

pu
t

A[0]

A

A[1]
B[0]

matching
table

A[0]

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

A[1]

BA

Figure 13:The flow of operands through the PE pipeline and forwarding networks:The figure is described in
detail in the text.

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

StoreBuffer
D$ Switch

Net
pseudo PE

Mem
pseudo PE

Net
pseudo PE

Mem
pseudo PE

Net
pseudo PE

Mem
pseudo PE

Net
pseudo PE

Mem
pseudo PE

North

South

East

West

domain

pod intra-cluster
interconnect

inter-cluster
switch

intra-domain
interconnect

pod bypassing

Figure 14:The cluster interconnects:A high-level picture of a cluster illustrating the interconnect organization.

16

Each input/output port supports the transmission of
up to two operands. Its routing follows a simple pro-
tocol: the current buffer storage state at each switch is
sent to the adjacent switches, which receive this infor-
mation a clock cycle later. Adjacent switches only send
information if the receiver is guaranteed to have space.

The inter-cluster switch provides two virtual channels
that the interconnect uses to prevent deadlock [22]. Each
output port contains two 8-entry output queues (one for
each virtual network). In some cases, a message may
have two possible directions (e.g., North and West if its
ultimate destination is to the northwest). In these cases
the router randomly selects which way to route the mes-
sage.

3.4 The store buffer

The hardware support for wave-ordered memory lies in
the WaveCache’s store buffers. The store buffers, one
per cluster, are responsible for implementing the wave-
ordered memory interface that guarantees correct mem-
ory ordering. To access memory, processing elements
send requests to their local store buffer via the MEM

pseudo-PE in their domain. The store buffer will ei-
ther process the request or direct it to another buffer via
the inter-cluster interconnect. All memory requests for
a singledynamicinstance of a wave (for example, an it-
eration of an inner loop), including requests from both
local and remote processing elements, are managed by
the same store buffer.

To simplify the description of the store buffer’s op-
eration, we denotepred(R), seq(R), and succ(R) as
the wave-ordering annotations for a requestR. We also
definenext(R) to be the sequence number of the op-
eration that actually followsR in the current instance
of the wave.next(R) is determined either directly from
succ(R) or is calculated by the wave-ordering hardware,
if succ(R) is ’?’.

The store buffer contains four major microarchitec-
tural components: anordering table, anext table, anis-
sued register, and a collection ofpartial store queues.
Store buffer requests are processed in three pipeline
stages: MEMORY-INPUT writes newly-arrived requests
into the ordering and next tables. MEMORY-SCHEDULE

reads up to four requests from the ordering table and
checks to see if they are ready to issue. MEMORY-
OUTPUT dispatches memory operations that can fire to
the cache or to a partial store queue (described below).
We detail each pipeline stage of this memory interface
below.

MEMORY-INPUT accepts up to four new memory re-
quests per cycle. It writes the address, operation and
data (if available in the case of Stores) into the ordering
table at the indexseq(R). If succ(R) is defined (i.e., not
’?’), the entry in the next table at locationseq(R) is up-
dated tosucc(R). If pred(R) is defined, the entry in the
next table at locationpred(R) is set toseq(R).

MEMORY-SCHEDULE maintains the issued register,
which points to the next memory operations to be
dispatched to the data cache. It uses this register
to read four entries from the next and ordering ta-
bles. If any memory ordering links can be formed
(i.e., next table entries are not empty), the memory
operations are dispatched to MEMORY-OUTPUT and
the issued register is advanced. The store buffer sup-
ports the decoupling of store-data from store-addresses.
This is done with a hardware structure called apar-
tial store queue, described below. The salient point for
MEMORY-SCHEDULE, however, is that Stores are sent
to MEMORY-OUTPUT even if their data has not yet ar-
rived.

Partial store queues take advantage of the fact that
store addresses can arrive significantly before their data.
In these cases, a partial store queue stores all operations
to the same address. These operations must wait for the
data to arrive, but other operations may proceed. When
the data finally arrives all, the operations in the partial
store queue can be applied in quick succession. The
store buffer contains two partial store queues.

MEMORY-OUTPUT reads and processes dispatched
memory operations. Four situations can occur. (1) The
operation is a Load or a Store with its data is present.
Operation proceeds to the data cache. (2) The operation
is a Load or a Store and a partial store queue exists for
its address. The memory operation is sent to the partial
store queue. (3) The memory operation is a Store, its
data has not yet arrived, and no partial store queue ex-
ists for its address. A free partial store queue is allocated
and the Store is sent to it. (4) The operation is a Load
or a Store, but no free partial store queue is available or
the partial store queue is full. The operation is discarded
and the issued register is rolled back. The operation will
reissue later.

3.5 Caches

The rest of the WaveCache’s memory hierarchy com-
prises a 32KB, four-way set associative L1 data cache
at each cluster, and a 16MB L2 cache distributed along
the edge of the chip (16 banks in a 4x4 WaveCache). A

17

directory-based multiple reader, single writer coherence
protocol keeps the L1 caches consistent. All coherence
traffic travels over the inter-cluster interconnect.

The L1 data cache has a 3-cycle hit delay. The L2’s
hit delay is 14-30 cycles depending upon the address and
the distance to the requesting cluster. Main memory la-
tency is modeled at 200 cycles.

3.6 Placement

Placing instructions carefully into the WaveCache is
critical to good performance, because of the competing
concerns we mentioned earlier. Instructions’ proximity
determines the communication latency between them,
arguing for tightly packing instructions together. On the
other hand, instructions that can execute simultaneously
should not end up at the same processing element, be-
cause competition for the single functional unit will se-
rialize them.

We continue to investigate the placement problem,
and details of our endeavors are available in [23]. Here,
we describe the approach we used for the studies in this
paper.

The placement scheme has a static and a dynamic
component. At compile time, the compiler performs a
pre-order depth-first traversal of the dataflow graph of
each function to generate a linear ordering of the instruc-
tions. We chose this traversal, because it tends to make
chains of dependent instructions in the dataflow graph
and consecutive in the ordering. The compiler breaks
the sequence of instructions into short segments. We
tune the segment length for each application.

At runtime, the WaveCache loads these short seg-
ments of instructions when an instruction in segment
that is not mapped into the WaveCache needs to execute.
The entire segment is mapped to a single PE. Because of
the ordering the compiler used to generate the segments,
they will usually be dependent on one another. As a re-
sult, they will not compete for execution resources, but
instead will execute on consecutive cycles. The algo-
rithm fills all the PEs in a domain, and then all the do-
mains in a cluster, before moving on to the next clus-
ter. It fills clusters by “snaking” across the grid, moving
from left to right on the even rows and right to left on
the odd rows.

This placement scheme does a good job of schedul-
ing execution and communication resources, but a third
factor, the so-called “parallelism explosion”, can have a
strong effect on performance in dataflow systems. Par-
allelism explosion occurs when part of an application

(e.g., the index computation of an inner loop) runs ahead
of the rest of program, generating a vast number of to-
kens that will not be consumed for a long time. These
tokens overflow the matching table and degrade perfor-
mance. We use a well-known dataflow technique, k-loop
bounding [24], to restrict the number iterations,k, that
can be executing at one time. We tunek for each appli-
cation.

3.7 The RTL model

To explore the area, speed, and complexity implications
of the WaveCache architecture, we have developed a
synthesizable RTL model of the components described
above. We use the RTL model, combined with detailed
architectural simulation, to tune the WaveCache’s pa-
rameters and make trade-offs between performance, cy-
cle time, and silicon area. All the specific parameters of
the architecture (e.g., cache sizes, bus widths, etc.) we
present reflect the results of this tuning process. The de-
sign we present is a WaveCache appropriate for general
purpose processing in 90nm technology. Other designs
targeted at specific workloads or future process tech-
nologies would differ in choice of particular parameters,
but the overall structure of the design would remain the
same. A thorough discussion of the RTL design and the
tuning process is beyond the scope of this paper (but can
be found in [25]). Here, we summarize the methodology
and the timing results.

We derive our results with the design rules and the
recommended tool infrastructure of the Taiwan Semi-
conductor Manufacturing Company’s TSMC Reference
Flow 4.0 [26], which is tuned for 130nm and smaller
designs (we use 90nm). By using these up-to-date spec-
ifications, we ensure, as best as possible, that our re-
sults scale to future technology nodes. To ensure that
our measurements are reasonable, we follow TSMC’s
advice and feed the generated netlist into Cadence En-
counter for floorplanning and placement, and then use
Cadence NanoRoute for routing [27]. After routing and
RC extraction, we measure the timing and area values.

According to the synthesis tools, our RTL model
meets our timing goal of a 20 FO4 cycle time (∼1Ghz
in 90nm). The cycle time remains the same regardless
of the size of the array of clusters. The model also pro-
vides detailed area measurements for the WaveCache’s
components. Table 1 shows a break down of area within
a single cluster. The ratios for an array of clusters are
the same.

In the next section we evaluate the WaveCache’s per-

18

Component Fraction of
cluster area

PE stages
INPUT 7%
MATCH 22%
DISPATCH 38%
EXECUTE 4%
OUTPUT 7%

PE total 78%
inter-cluster 2%
interconnect switch
storebuffer 17%
L1 cache 3%

Table 1:A cluster’s area budget: A breakdown of the
area required for a cluster. Most of the area is devoted
to processing resources.

formance on single-threaded applications and compare
its performance and area requirements with a conven-
tional superscalar processor.

4 Single-threaded WaveCache performance

This section measures the WaveCache’s performance on
a variety of single-threaded workloads. We measure the
performance of a single-cluster WaveCache design us-
ing cycle-accurate simulation of the architecture in Sec-
tion 3. This WaveCache achieves performance that is
similar to that of a conventional out-of-order superscalar
processor, but does so in only30% as much area.

Before we present the performance results in detail,
we review the WaveCache’s parameters and describe our
workloads and toolchain.

4.1 Methodology

Table 2 summarizes the parameters for the WaveCache
we use in this section.

To evaluate WaveCache performance, we use an
execution-driven, cycle accurate simulator that closely
matches our RTL model. The performance we report
here is lower than that in the original WaveScalar pa-
per [2]. The discrepancy is not surprising, since that
work used an idealized memory system (perfect L1 data
caches), larger, 16-PE domains, and a non-pipelined de-
sign.

In the experiments in this section, we use nine bench-
marks from three groups. From SpecINT2000:gzip,
mcf, twolf ; from SpecFP2000:ammp, art, equake; and

from Mediabench: djpeg, mpeg2encode, rawdaudio.
We compiled each application with the DEC cc compiler
using -O4 -fast -inline speed optimizations.
A binary translator-based toolchain was used to convert
these binaries into WaveScalar assembly and then into
WaveScalar binaries. The choice of benchmarks repre-
sents a range of applications as well as the limitations of
our binary translator. The binary translator cannot pro-
cess some programming constructs (e.g., compiler in-
trinsics that don’t obey the alpha calling convention and
jump tables), but this is strictly a limitation of our trans-
lator, not a limitation of WaveScalar’s ISA or execution
model. We are currently working on a full-fledged com-
piler that will allow us to run a wider range of applica-
tions.

To make measurements comparable with conven-
tional architectures, we measure performance inalpha
instructions per cycle(AIPC) and base our superscalar
comparison on a machine with similar clock speed [28].
AIPC measures the number of non-overhead instruc-
tions (e.g., STEER, φ, etc.) executed per cycle. The
AIPC measurements for the superscalar architectures we
compare to are in good agreement with other measure-
ments [29].

After the startup portion of each application is fin-
ished, we run each application for 100 million Alpha
instructions, or to completion.

4.2 Single threaded performance

To evaluate WaveScalar’s single-threaded performance,
we compare three different architectures: two Wave-
Caches and an out-of-order processor. For the out-of-
order measurements, we usesim-alpha configured to
model the Alpha EV7 [30, 31], but with the same L1,
L2, and main memory latencies we model for the Wave-
Cache. The two WaveCache configurations areWC1x1,
a 1x1 array of clusters, andWC2x2, a 2x2 array. The
only other difference between the two is the size of the
L2 cache (1MB for WC1x1 vs 4MB for WC2x2).

Figure 15 compares all three architectures on the
single-threaded benchmarks using AIPC. Of the two
WaveCache designs, WS1x1 has better performance on
two floating point applications (ammpandequake). A
single cluster is sufficient to hold the working set of
instructions for these applications, so moving to a 4-
cluster array spreads the instructions out and increases
communication costs. The costs take two forms. First,
the WC2x2 contains four L1 data caches that must be
kept coherent, while WC1x1 contains a single cache, so

19

WaveCache Capac-
ity

2K(WC1x1) or 8K(WC2x2) static instructions (64 per PE)

PEs per Domain 8 (4 pods) Domains / Cluster 4
PE Input Queue 16 entries, 4 banks Network Latency within Pod: 1 cycle
PE Output Queue 4 entries, 2 ports (1r, 1w) within Domain: 5 cycles
PE Pipeline Depth 5 stages within Cluster: 9 cycles

inter-Cluster: 9 + cluster dist.
L1 Caches 32KB, 4-way set associative,

128B line, 4 accesses per cy-
cle

L2 Cache 1MB (WC1x1) or 4MB
(WC2x2) shared, 128B line,
16-way set associative, 10
cycle access

Main RAM 200 cycle latency Network Switch 2-port, bidirectional

Table 2: Microarchitectural parameters of the baseline WaveCache

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

am
m
p

a
rt

eq
u
ak
e

g
zi
p

m
cf

tw
o
lf

d
jp
eg

m
p
eg
2
en
co
d
e

ra
w
d
au
d
io

av
er
ag
e

A
IP
C

WS1x1
WS2x2
OOO

'

Figure 15: Single-threaded WaveCache vs. super-
scalar: On average, both WaveCaches perform compa-
rably to the superscalar.

it can avoid this overhead. Second, the average latency
of messages between instructions increases by 20% on
average, because some messages must traverse the inter-
cluster network. The other applications, excepttwolf
andart, have very similar performance on both configu-
rations.Twolf andart have large enough working sets to
utilize the additional instruction capacity (twolf) or the
additional memory bandwidth provided by the four L1
data caches (art).

The performance of the WS1x1 compared to OOO
does not show a clear winner in terms of raw perfor-
mance. WS1x1 tends to do better for four applications,
outperforming OOO by 4.5× on art, 66% onequake,
34% onammp, and 2.5× on mcf. All these applica-
tions are memory-bound (OOO with a perfect memory
system performs between 3.6-32× better), and two fac-
tors contribute to WaveScalar’s superior performance.
First, WaveScalar’s dataflow execution model allows
several iterations to execute simultaneously. Second,
since wave-ordered memory allows many waves to be
executing simultaneously, load and store requests can
arrive at the store buffer long before they are actually
applied to memory. The store buffer can then prefetch
the cache lines that the requests will access, so when
the requests emerge from the store buffer in the correct
order, the data they need is waiting for them.

WaveScalar does less well on integer computations
due to frequent function calls. A function can only oc-
cur at the end of a wave, because called functions imme-
diately create a new wave. As a result frequent function
calls in the integer applications reduce the size of the
waves the compiler can create by 50% on average com-
pared to floating point applications, consequently reduc-

20

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

am
m
p

a
rt

eq
u
ak
e

g
zi
p

m
cf

tw
o
lf

d
jp
eg

m
p
eg
2
en
co
d
e

ra
w
d
au
d
io

av
er
ag
e

A
IP
C
/
m
m
2

WS1x1
WS2x2
OOO

Figure 16:Performance per unit area: The 1x1 Wave-
Cache is the clear winner in terms of performance per
area.

ing memory parallelism.Twolf andgzip are hit hard-
est by this effect, and OOO outperform WS1x1 by 54%
and 32% respectively. For the rest of the applications,
WS1x1 is no more than 10% slower than OOO.

The performance differences between the two archi-
tectures are clearer if we take into account the die area
required for each processor. To estimate the size of
OOO, we examined a die photo of the EV7 in 180nm
technology [31, 32]. The entire die is 396mm2. From
this, we subtracted the area devoted to several compo-
nents that our RTL model does not include (e.g., the
PLL, IO pads, and inter-chip network controller), but
would be present in a real WaveCache. We estimate the
remaining area to be∼291mm2, with ∼207mm2 de-
voted to 2MB of L2 cache. Scaling all these measure-
ments to 90nm technology yields∼72mm2 total and
51mm2 of L2. Measurements from our RTL model
show that WC1x1 occupies 28mm2 (12mm2 of L2
cache) and WC2x2 occupies 100mm2 (44mm2 of L2
cache) in 90nm.

Figure 16 shows the area-efficiency of the Wave-
Caches measured in AIPC/mm2 compared to OOO. The
WaveCache’s more compact design allows WS1x1 to
extract 2.5× as much AIPC per area as OOO, on av-
erage. The results for WS2x2 show that, for these ap-
plications, quadrupling the size of the WaveCache does
not have an commensurate effect on performance.

Because OOO is configured to match the EV7, it has

twice as much on-chip cache as WS1x1. To measure
the effect of the extra memory, we halved the amount of
cache in the OOO configuration (data not shown). This
change reduced OOO’s area by 41% and its performance
by 17%. WS1x1 provides 80% more performance per
area than this configuration.

For most of our workloads, the WaveCache’s bottom-
line single-threaded AIPC is as good as or better than
conventional superscalar designs, and it achieves this
level of performance with a less complicated design and
in a smaller area. In the next two sections we extend
WaveScalar’s abilities to handle conventional pthread-
style threads and to exploit its dataflow underpinnings
to execute fine-grain threads. In these areas, the Wave-
Cache’s performance is even more impressive.

5 Running multiple threads in WaveScalar

The WaveScalar architecture described so far can sup-
port a single executing thread. Modern applications such
as databases and web servers use multiple threads both
as a useful programming abstraction and to increase per-
formance by exposing parallelism.

Recently, manufacturers have begun placing several
processors on a single die to create chip multiproces-
sors (CMPs). There are two reasons for this move:
First, scaling challenges will make designing ever-larger
superscalar processors infeasible. Second, commercial
workloads are often more concerned with the aggregate
performance of many threads rather than single-thread
performance. Any architecture intended as an alterna-
tive to CMPs must be able to execute multiple threads
simultaneously.

This section extends the single-threaded WaveScalar
design to execute multiple threads. The key issues that
WaveScalar must address are managing multiple, par-
allel sequences of wave-ordered memory operations,
differentiating between data values that belong to dif-
ferent threads, and allowing threads to communicate.
WaveScalar’s solution to these problems are all sim-
ple and efficient. For instance, WaveScalar is the first
architecture to allow programs to manage memory or-
dering directly by creating and destroying memory or-
derings and dynamically binding them to a particular
thread. WaveScalar’s thread-spawning facility is effi-
cient enough to parallelize small loops. Its synchroniza-
tion mechanism is also light-weight and is tightly inte-
grated into the dataflow framework.

The required changes to the WaveCache to support
the ISA extensions are surprisingly small, and do not

21

impact the overall structure of the WaveCache, because
executing threads dynamically share most WaveCache
processing resources.

To evaluate the WaveCache’s multithreaded perfor-
mance, we simulate an 64-cluster design, represent-
ing an aggressive “big iron” processor built in next-
generation process technology and suitable for large-
scale multithreaded programs. For most Splash-2
benchmarks, the WaveCache achieves nearly linear
speedup with up to 64 concurrent threads. To place the
multithreaded results in context with contemporary de-
signs, we compare a smaller, 16-cluster array that could
be built today with a range of multithreaded von Neu-
mann processors from the literature. For the workloads
the studies have in common, the WaveCache outper-
forms the von Neumann designs by a factor of between
2 and 16.

The next two sections describe the multihthreading
ISA extensions. Section 5.3 presents the Splash-2 re-
sults and contains the comparison to multithreaded von
Neumann machines.

5.1 Multiple memory orderings

As previously introduced, the wave-ordered memory in-
terface provides support for a single memory ordering.
Forcing all threads to contend for the same memory in-
terface, even if it were possible, would be detrimental to
performance. Consequently, to support multiple threads,
we extend the WaveScalar architecture to allow multi-
ple independent sequences of ordered memory accesses,
each of which belongs to a separate thread. First, we an-
notate every data value with a THREAD-ID in addition
to its WAVE-NUMBER. Then, we introduce instructions
to associate memory-ordering resources with particular
THREAD-IDs.

THREAD -I Ds: The WaveCache already has a mech-
anism for distinguishing values and memory requests
within a single thread from one another – they are tagged
with WAVE-NUMBERs. To differentiate values from
different threads, we extend this tag with a THREAD-
ID and modify WaveScalar’s dataflow firing rule to re-
quire that operand tags match on both THREAD-ID

and WAVE-NUMBER. As with WAVE-NUMBERs, ad-
ditional instructions are provided to directly manipulate
THREAD-IDs. In figures and examples throughout the
rest of this paper, the notation<t, w>.d signifies a to-
ken tagged with THREAD-ID t and WAVE-NUMBER w
and having data valued.

To manipulate THREAD-IDs and WAVE-NUMBERs,

we introduce several instructions that convert WAVE-
NUMBERs and THREAD-IDs to normal data values and
back again. The most powerful of these is DATA -
TO-THREAD-WAVE, which sets both the THREAD-
ID and WAVE-NUMBER at once; DATA -TO-THREAD-
WAVE takes three inputs,<t0, w0>.t1, <t0, w0>.w1,
and <t0, w0>.d and produces as output<t1, w1>.d.
WaveScalar also provides two instructions (DATA -TO-
THREAD and DATA -TO-WAVE) to set THREAD-IDs
and WAVE-NUMBERs separately, as well as two instruc-
tions (THREAD-TO-DATA and WAVE-TO-DATA) to ex-
tract THREAD-IDs and WAVE-NUMBERs. Together, all
these instructions place WaveScalar’s tagging mecha-
nism completely under programmer control, and allow
programmers to write software such as threading li-
braries. For instance, when the library spawns a new
thread, it must relabel the inputs with the new thread’s
THREAD-ID and the WAVE-NUMBER of the first wave
in its execution. DATA -TO-THREAD-WAVE accom-
plishes exactly this task.

Managing memory orderings: Having associated a
THREAD-ID with each value and memory request, we
now extend the wave-ordered memory interface to en-
able programs to associate memory orderings with
THREAD-IDs. Two new instructions control the creation
and destruction of memory orderings, in essence cre-
ating and terminating coarse-grain threads: MEMORY-
SEQUENCE-START and MEMORY-SEQUENCE-STOP.

MEMORY-SEQUENCE-START creates a new wave-
ordered memory sequence for a new thread. This se-
quence is assigned to a store buffer, which services all
memory requests tagged with the thread’s THREAD-ID

and WAVE-NUMBER; requests with the same THREAD-
ID but a different WAVE-NUMBER cause a new store
buffer to be allocated.

MEMORY-SEQUENCE-STOP terminates a memory
ordering sequence. The wave-ordered memory system
uses this instruction to ensure that all memory opera-
tions in the sequence have completed before its store
buffer resources are released. Figure 17 illustrates how,
using the new instructions, threadt creates a new thread
s, threads executes and then terminates.

Implementation: Adding support for multiple mem-
ory orderings requires only small changes to the Wave-
Cache’s microarchitecture. First, the widths of the com-
munication busses and operand queues must be ex-
panded to hold THREAD-IDs. Second, instead of storing
each static instruction from the working set of a program

22

A

B C

Figure 18:Thread creation overhead: Contour lines for speedups of1× (no speedup),2× and4×. The area
above the each line is a region of program speedup at or above the stated value. Spawning wave-ordered threads
in the WaveCache is lightweight enough to profitably parallelize loops with as few as ten instructions in the loop
body if four independent iterations may execute.

23

<t:w>.u

MemorySequenceStart

<t:w>.s <t:w>.u
<t:w>.d

<t:w>.e
<t:w>.f

MemorySequenceStop

Ordered thread body
executes

<s:u>.finished

Thread creation
Thread
destruction

DataToThread
Wave

<s:u>.e
<s:u>.d

<s:u>.f

Figure 17:Thread creation and destruction: Thread
t spawns a new threads by sendings’s THREAD-ID

(s) and WAVE-NUMBER (u) to MEMORY-SEQUENCE-
START, which allocates a store buffer to handle the first
wave in the new thread. The result of the MEMORY-
SEQUENCE-START instruction helps trigger the three
DATA -TO-THREAD-WAVE instructions that set ups’s
three input parameters. The inputs to each DATA -
TO-THREAD-WAVE instruction are a parameter value
(d, e, or f), the new THREAD-ID (s) and the new
WAVE-NUMBER (u). A token with u is produced by
MEMORY-SEQUENCE-START deliberately, to guarantee
that no instructions in threads execute until MEMORY-
SEQUENCE-START has finished allocating its store
buffer. Threads terminates with MEMORY-SEQUENCE-
STOP, whose output token<s, u>.finished guaran-
tees that its store buffer area has been deallocated.

in the WaveCache, one copy of each static instruction is
stored for each thread. This means that if two threads
are executing the same static instructions, each may map
the static instructions to different PEs. Finally, the PEs
must implement the THREAD-ID and WAVE-NUMBER

manipulation instructions.

Efficiency: The overhead associated with spawning a
thread directly affects the granularity of extractable par-
allelism. To assess this overhead in the WaveCache, we
designed a controlled experiment consisting of a simple
parallel loop in which each iteration executes in a sep-
arate thread. The threads have their own wave-ordered
memory sequences but do not have private stacks, so
they cannot make function calls. We varied the size
of the loop body, which affects the granularity of par-
allelism, and the dependence distance between mem-
ory operands, which affects the number of threads that
can execute simultaneously. We then measured speedup
compared to a serial execution of a loop doing the same
work. The experiment’s goal was to answer the fol-
lowing question: Given a loop body with a critical path
length ofN instructions and a dependence distance that
allowsT iterations to run in parallel, can the WaveCache
speed up execution by spawning a new thread for every
loop iteration?

Figure 18 is a contour plot of speedup of the loop as a
function of its loop size (critical path length in ADD in-
structions, the horizontal axis) and dependence distance
(independent iterations, the vertical axis). Contour lines
are shown for speedups of1× (no speedup),2× and4×.
The area above each line is a region of program speedup
at or above the labeled value. The data show that the
WaveScalar overhead of creating and destroying threads
is so low that for loop bodies of only 24 dependent in-
structions and a dependence distance of 3, it becomes
advantageous to spawn a thread to execute each itera-
tion (‘A’ in the figure). A dependence distance of 10 re-
duces the size of profitably parallelizable loops to only 4
instructions (‘B’). Increasing the number of instructions
to 20 quadruples performance (‘C’).

5.2 Synchronization

The ability to efficiently create and terminate pthread-
style threads, as described in the previous subsection,
provides only part of the functionality required to make
multithreading useful. Independent threads must also
synchronize and communicate with one another. To this
end, WaveScalar provides a memory fence instruction
that allows WaveScalar to enforce a relaxed consistency

24

model and a specialized instruction that models a hard-
ware queue lock.

5.2.1 Memory fence

Wave-ordered memory provides a single thread with a
consistent view of memory, since it guarantees that the
results of earlier memory operations are visible to later
operations. In some situations, such as before taking or
releasing a lock, a multithreaded processor must guaran-
tee that the results of a thread’s memory operations are
visible tootherthreads. We add to the ISA an additional
instruction, MEMORY-NOP-ACK that provides this as-
surance by acting as a memory fence. MEMORY-NOP-
ACK prompts the wave-ordered interface to commit the
thread’s prior loads and stores to memory, thereby en-
suring their visibility to other threads and providing
WaveScalar with a relaxed consistency model [33]. The
interface then returns an acknowledgment, which the
thread can use to trigger execution of its subsequent in-
structions.

5.2.2 Interthread synchronization

Most commercially deployed multiprocessors and mul-
tithreaded processors provide interthread synchroniza-
tion through the memory system via primitives such
as TEST-AND-SET, COMPARE-AND-SWAP, or LOAD-
LOCK/STORE-CONDITIONAL. Some research efforts
also propose building complete locking mechanisms in
hardware [34, 35]. Such queue locks offer many per-
formance advantages in the presence of high lock con-
tention.

In WaveScalar, we add support for queue locks in
a way that constrains neither the number of locks
nor the number of threads that may contend for the
lock. This support is embodied in a synchroniza-
tion instruction called THREAD-COORDINATE, which
synchronizes two threads by passing a value between
them. THREAD-COORDINATE is similar in spirit to
other lightweight synchronization primitives [36, 37],
but is tailored to WaveScalar’s dataflow framework.

As Figure 19 illustrates, THREAD-COORDINATE re-
quires slightly different matching rules. 2 All
WaveScalar instructionsexceptTHREAD-COORDINATE

fire when the tags of two input values match, and they

2Some previous dataflow machines altered the dataflow firing
rule for other purposes. For example, Sigma-1 used “sticky” tags to
prevent the consumption of loop-invariant data and “error” tokens to
swallow values of instructions that incurred exceptions [38]. Mon-
soon’s M-structure store units had a special matching rule to enforce
load-store order [39].

produce outputs with the same tag (Figure 19, left). For
example, in the figure, both the input tokens and the re-
sult have THREAD-ID t0 and WAVE-NUMBER w0.

In contrast, THREAD-COORDINATE fires when the
data valueof a token at its first input matches the
THREAD-ID of a token at its second input. This is de-
picted on the right side of Figure 19, where the data
value of the left input token and the THREAD-ID of the
right input token are botht1. THREAD-COORDINATE

generates an output token with the THREAD-ID and
WAVE-NUMBER from the first input and the data
value from the second input. In Figure 19, this pro-
duces an output of<t0, w0>.d. In essence, THREAD-
COORDINATE passes the second input’s value (d) to the
thread of the first input (t0). Since the two inputs come
from different threads, this forces the receiving thread
(t0 in this case) to wait for the data from the sending
thread (t1) before continuing execution.

To support THREAD-COORDINATE in hardware, we
augment the tag matching logic at each PE. We add
two microarchitectural counters at each PE to rela-
bel the WAVE-NUMBERs of the inputs to THREAD-
COORDINATE instructions so they are processed in
FIFO order. Using this relabeling, the matching queues
naturally form a serializing queue with efficient constant
time access and no starvation.

Although one can construct many kinds of syn-
chronization objects using THREAD-COORDINATE, for
brevity we only illustrate a simple mutex (Figure 20).
In this case, THREAD-COORDINATE is the vehicle by
which a thread releasing a mutex passes control to an-
other thread wishing to acquire it.

The mutex in Figure 20 is represented by a THREAD-
ID, tm, although it is not a thread in the usual sense;
instead,tm’s sole function is to uniquely name the mu-
tex. A threadt1 that has locked mutextm releases it in
two steps (right side of figure). First,t1 ensures that the
memory operations it executed inside the critical sec-
tion have completed by executing MEMORY-NOP-ACK.
Then, t1 uses DATA -TO-THREAD to create the token
<tm, u>.tm, which it sends to the second input port of
THREAD-COORDINATE, thereby releasing the mutex.

Another thread,t0 in the figure, can attempt to acquire
the mutex by sending<t0, w>.tm (the data is the mu-
tex) to THREAD-COORDINATE. This token will either
find the token fromt1 waiting for it (i.e., the lock is free)
or await its arrival (i.e.,t1 still holds the lock). When
the release token fromt1 and the request token fromt0
are both present, THREAD-COORDINATE will find that

25

tc

matchmatch

add

<t0:w0>. d0 + d1

<t0:w0>.d1<t0:w0>.d0

<t0:w0>.d

<t1:w1>.d<t0:w0>.t1

Figure 19:Tag matching: Most instructions, like
the ADD shown here at left, fire when the thread
and wave numbers on both input tokens match.
Inputs to THREAD-COORDINATE (right) match if
the THREAD-ID of the token on the second input
matches the data value of the token on the first
input.

<tm:u>.tm

Thread-
Coordinate

Data-to-
Thread

releases tmacquires tm

<t1:u>.tm

<t0:w>.tm

Memory-
Nop-Ack

<t1:u>.tm
(from critical section)

<t0:w>.tm

(to critical section)

Thread t0 Thread t1

t1 releases mutex

t0 requests mutex

Figure 20:A mutex: THREAD-COORDINATE is
used to construct a mutex, as described in the text.

Benchmark Parameters

fft -m12
lu -n128
radix -n16384 -r32
ocean-noncont -n18
water-spatial 64 molecules

Table 3: Splash-2 benchmarks and their parameters used
in this study.

they match according to the rules discussed above, and
it will then produce a token<t0, w>.tm. If all instruc-
tions in the critical section guarded by mutextm depend
on this output token (directly or via a chain of data de-
pendences), threadt0 cannot execute the critical section
until THREAD-COORDINATE produces it.

5.3 Splash-2

In this section, we evaluate WaveScalar’s multithread-
ing facilities by executing coarse-grain, multithreaded
applications from the Splash-2 benchmark suite (Ta-
ble 3). We use the toolchain and simulator described
in Section 4.1. We simulate an 8x8 array of clusters to
model an aggressive, future-generation design. Using

the results from the RTL model described in Section 3.7
scaled to 45nm, we estimate that the processor occupies
∼290mm2, with an on-chip 16MB L2.

After skipping past initialization, we measure execu-
tion of the parallel phases of the benchmarks. Our per-
formance metric is execution-time speedup relative to a
single thread executing on the same WaveCache. We
also compare the WaveScalar speedups to those calcu-
lated by other researchers for other threaded architec-
tures. Component metrics help explain these bottom-
line results, where appropriate.

Evaluation of a multithreaded WaveCache. Fig-
ure 21 contains speedups of multithreaded WaveCaches
for all six benchmarks, as compared to their single-
threaded running time. On average, the WaveCache
achieves near-linear speedup (25×) for up to 32 threads.
Average performance increases sub-linearly with 128
threads, up to 47× speedup with an average IPC of 88.

Interestingly, increasing beyond 64 threads forocean
and raytrace reduces performance. The drop-off oc-
curs because of WaveCache congestion from the larger
instruction working sets and L1 data evictions due to
capacity misses. For example, going from 64 to 128
threads,oceansuffers 18% more WaveCache instruc-
tion misses than would be expected from the additional

26

0

10

20

30

40

50

60

70

80

90

fft lu ocean water raytrace radix average

S
p
e
e
d
u
p

1
2
4
8
16
32
64
128

2.0

168

1.8

111

1.4

40

1.2

72

0.8

51

0.4

25

1.2

88

Figure 21:Splash-2 on the WaveCache.:We evaluate each of our Splash-2 benchmarks on the baseline Wave-
Cache with between 1 and 128 threads. The bars represent speedup in total execution time. The numbers above the
single-threaded bars are IPC for that configuration. Two benchmarks,waterandradix, cannot utilize 128 threads
with the input data set we use, so that value is absent.

compulsory misses. In addition, the operand match-
ing cache miss rate increases by 23%. Finally, the data
cache miss rate, which is essentially constant for up to
32 threads, doubles as the number of threads scales to
128. This additional pressure on the memory system in-
creasesocean’s memory access latency by a factor of
eleven.

The same factors that cause the performance ofocean
and raytrace to suffer when the number of threads
exceeds 64 also reduce the rate of speedup improve-
ment for other applications as the number of threads in-
creases. For example, the WaveCache instruction miss
rate quadruples forlu when the number of threads in-
creases from 64 to 128, curbing speedup. In contrast,
FFT, with its relatively small per-thread working set of
instructions and data, does not tax these resources, and
so achieves better speedup with up to 128 threads.

Comparison to other threaded architectures We
compare the performance of the WaveCache and a few
other architectures on three Splash-2 kernels:lu, fft and
radix. We present results from several sources in addi-
tion to our own WaveCache simulator. For CMP con-
figurations we performed our own experiments using a
simple in-order core (scmp), as well as measurements
from [40] and [41]. Comparing data from such di-

verse sources is difficult, and drawing precise conclu-
sions about the results is hard; however, we believe that
the measurements are still valuable for the broad trends
they reveal.

To make the comparison as equitable as possible, we
use a smaller, 4x4 WaveCache for these studies. Our
RTL model gives an area of 253mm2 for this design (we
assume an off-chip, 16 MB L2 cache and increase its
access time from 10 to 20 cycles). While we do not have
precise area measurements for the other architectures,
the most aggressive configurations (i.e., most cores or
functional units) are in the same ball park with respect
to size.

To facilitate the comparison of performance numbers
of these different sources, we normalized all perfor-
mance numbers to the performance of a simulated scalar
processor with a 5-stage pipeline. The processor has
16KB data and instruction caches, and a 1MB L2 cache,
all 4-way set associative. The L2 hit latency is 12 cycles,
and the memory access latency of 200 cycles matches
that of the WaveCache.

Figure 22 shows the results. The stacked bars rep-
resent the increase in performance contributed by exe-
cuting with more threads. The bars labeledws depict
the performance of the WaveCache. The bars labeled

27

0

5

10

15

20

25

30

35

ws
sc

m
p

sm
t8

cm
p4

cm
p2 ws

sc
m
p

sm
t8

cm
p4

cm
p2

ec
km

an ws
sc

m
p

ec
km

an

S
p

e
e
d

u
p

 v
s

1
-t

h
re

a
d

 s
ca

la
r

C
M

P

128 threads

64 threads

32 threads

16 threads

8 threads

4 threads

2 threads

1 thread

46

lu fft radix

Figure 22: Performance comparison of various architectures.:Each bar represents performance of a given
architecture for a varied number of threads. We normalize running times to that of a single-issue scalar processor
with a high memory access latency, and compare speedups of various multithreaded architectures.ws is a 4x4
WaveCache.scmpis a CMP of the aforementioned scalar processor on a shared bus with MESI coherence.smt8,
cmp4andcmp2are an 8-threaded SMT, a 4-core out-of-order CMP and a 2-core OOO CMP with similar resources,
from [40]. ekman[41] is a study of CMPs in which the number of cores is varied, but the number of execution
resources (functional units, issue width, etc.) is fixed.

28

scmprepresent the performance of a CMP whose cores
are the scalar processors described above with 1MB of
L2 cache per processor core. These processors are con-
nected via a shared bus between private L1 caches and
a shared L2 cache. Memory is sequentially consistent,
and coherence is maintained by a 4-state snoopy proto-
col. Up to 4 accesses to the shared memory may overlap.
For the CMPs the stacked bars represent increased per-
formance from simulating more processor cores. The 4-
and 8-core bars loosely modelHydra [42] and a single
Piranhachip [43], respectively.

The bars labeledsmt8, cmp4 and cmp2 are the 8-
threaded SMT and 4- and 2-core out-of-order CMPs
from [40]. We extracted their running times from data
provided by the authors. Memory latency is low on these
systems (dozens of cycles) compared to expected future
latencies, and all configurations share the L1 data- and
instruction caches.

To compare the results from [41] (labeledekmanin
the figure), which are normalized to the performance
of their 2-core CMP, we simulated a superscalar with
a configuration similar to one of these cores and halved
the reported execution time; we then used this figure as
an estimate of absolute baseline performance. In [41],
the authors fixed the execution resources for all con-
figurations, and partitioned them among an increasing
number of decreasingly wide CMP cores. For example,
the 2-thread component of theekmanbars is the perfor-
mance of a 2-core CMP in which each core has a fetch
width of 8, while the 16-thread component represents
the performance of 16 cores with a fetch-width of 1. La-
tency to main memory is 384 cycles, and latency to the
L2 cache is 12 cycles.

The graph shows that the WaveCache can handily out-
perform the other architectures at high thread counts.
It executes1.8× to 10.9× faster thanscmp, 5.2× to
10.8× faster thansmt8, and6.4× to 16.6× faster than
the various out-of-order CMP configurations. Compo-
nent metrics show that the WaveCache’s performance
benefits arise from its use of point-to-point communi-
cation, rather than a system-wide broadcast mechanism,
and from the latency-tolerance of its dataflow execution
model. The former enables scaling to large numbers of
clusters and threads, while the latter helps mask the in-
creased memory latency incurred by the directory proto-
col and the high load-use penalty on the L1 data cache.

The performance of all systems eventually plateaus
when some bottleneck resource saturates. Forscmp
this resource is shared L2 bus bandwidth. Bus satu-

ration occurs at 16 processors for LU, 8 for FFT and
2 for RADIX3. For the other von Neumann CMP sys-
tems, the fixed allocation of execution resources is the
limit [40], resulting in a decrease in per-processor IPC.
For example, inekman, per-processor IPC drops 50%
as the number of processors increases from 4 to 16 for
RADIX and FFT. On the WaveCache, speedup plateaus
when the working set of all the threads equals its in-
struction capacity. This offers WaveCache the oppor-
tunity to tune the number of threads to the amount of
on-chip resources. With their static partitioning of exe-
cution resources across processors, this option is absent
for CMPs; and the monolithic nature of SMT architec-
tures prevents scaling to large numbers of thread con-
texts.

5.4 Discussion

The WaveCache has clear promise as a multiprocess-
ing platform. In the 90nm technology available today,
we could easily build a WaveCache that would outper-
form a range of von Neumann-style alternatives, and,
as we mentioned earlier, scaling the WaveCache to fu-
ture process technologies is straightforward. Scaling
multi-threaded WaveScalar systems beyond a single die
is also feasible. WaveScalar’s execution model makes
and requires no guarantees about communication la-
tency, so using several WaveCache processors to con-
struct a larger computing substrate is a possibility.

In the next section we investigate the potential of
WaveScalar’s core dataflow execution model to support
a second, finer-grain threading model. These fine-grain
threads utilize a simpler, unordered memory interface,
and can provide huge performance gains for some ap-
plications.

6 WaveScalar’s dataflow side

The WaveScalar instruction set we have described so far
replicates the functionality of a von Neumann proces-
sor or a CMP composed of von Neumann processors.
Providing these capabilities is essential if WaveScalar is
to be a viable alternative to von Neumann architectures,
but it is not the limit of what WaveScalar can do.

This section exploits WaveScalar’s dataflow under-
pinning to achieve two things that conventional von

3While a 128-corescmpwith a more sophisticated coherence
system might perform more competitively with the WaveCache on
RADIX and FFT, studies of these systems are not present in the lit-
erature, and it is not clear what their optimal memory system design
would be.

29

Neumann machines cannot. First, it provides a sec-
ond,unorderedmemory interface that is similar in spirit
to the token-passing interface in Section 2.2.6. The
unordered interface is built to express memory paral-
lelism. It bypasses the wave-ordered store buffer and
accesses the L1 cache directly, avoiding the overhead
of the wave-ordering hardware. Because the unordered
operations do not go through the store buffer, they can
arrive at the L1 cache in any order or in parallel. As we
describe below, the programmer can restrict this order-
ing by adding edges to the programs dataflow graph.

Second, the WaveCache can support very fine-grain
threads. On von Neumann machines the amount of
hardware devoted to a thread is fixed (e.g., one core on
CMP or one thread context on an SMT machine), and
the number of threads that can execute at once is rela-
tively small. On the WaveCache, the number of physical
store buffers limits the number of threads that use wave-
ordered memory, but any number of threads can use the
unordered interface at one time. In addition, spawning
these threads is very cheap. As a result, it is feasible
to break a program up into 100s of parallel, fine-grain
threads.

We begin by describing the unordered memory in-
terface. Then we use it and fine-grain threads to ex-
press large amounts of parallelism in three applica-
tion kernels. Finally, we combine the two styles of
programming to parallelizeequakefrom the Spec2000
floating point suite, and demonstrate that by combin-
ing WaveScalar’s ability to run both coarse-grain von
Neumann-style threads and fine-grain dataflow-style
threads, we can achieve performance greater than uti-
lizing either alone, in this case, a9× speedup.

6.1 Unordered memory

As described, WaveScalar’s only mechanism for access-
ing memory is the wave-ordered memory interface. The
interface is necessary for executing conventional pro-
grams, but it can only express limited parallelism (i.e.,
by using ripple numbers). WaveScalar’s unordered in-
terface makes a different trade-off: it cannot efficiently
provide the sequential ordering that conventional pro-
grams require, but it excels at expressing parallelism,
because it eliminates unneeded ordering constraints and
avoids contention for the store buffer. Because of this, it
allows programmers or compilers to express and exploit
memory parallelism when they know it exists.

Like all other dataflow instructions, unordered oper-
ations are only constrained by their static data depen-

dences. This means that if two unordered memory op-
erations are not directly or indirectly data dependent,
they can execute in any order. Programmers and compil-
ers can exploit this fact to express parallelism between
memory operations that can safely execute out of order;
however, they need a mechanism to enforce ordering
among those that cannot.

To illustrate, consider a Store and a Load that could
potentially access the same address. If, for correct exe-
cution, the Load must see the value written by the Store
(i.e., a read-after-write dependence), then the thread
must ensure that the Load does not execute until the
Store has finished. If the thread uses wave-ordered
memory, the store buffer enforces this constraint; how-
ever, since unordered memory operations bypass the
wave-ordered interface, unordered accesses must use a
different mechanism.

To ensure that the Load executes after the Store, there
must be a data dependence between them. This means
memory operations must produce an output token that
can be passed to the operations that follow. Loads al-
ready do this, because they return a value from memory.
We modify Stores to produce a value when they com-
plete. The value that the token carries is unimportant,
since its only purpose is to signal that the Store is com-
plete. In our implementation it is always zero. We call
unordered Loads and Stores, LOAD-UNORDERED and
STORE-UNORDERED-ACK, respectively.

6.1.1 Performance evaluation

To demonstrate the potential of unordered memory, we
implemented three traditionally parallel but memory-
intensive kernels – matrix multiply (MMUL), longest
common subsequence (LCS), and a finite input response
filter (FIR) – in three different styles and compared their
performance.Serial coarse-grainuses a single thread
written in C.Parallel coarse-grainis a coarse-grain par-
allelized version, also written in C, that uses the coarse-
grain threading mechanisms described in Section 5.Un-
ordereduses a single coarse-grain thread written in C to
control a pool of fine-grain threads that use unordered
memory, written in WaveScalar assembly. We call these
unordered threads.

For each application, we tuned the number of threads
and the array tile size to achieve the best performance
possible for a particular implementation. MMUL multi-
plies 128 × 128 entry matrices, LCS compares strings
of 1024 characters, and FIR filters 8192 inputs with
256 taps. They use between 32 (FIR) and 1000 (LCS)

30

0

50

100

150

200

250

300

mmul lcs fir

S
p

e
e
d

u
p

 v
s

si
n

g
le

-t
h

re
a
d

e
d

`

0

2

4

6

8

10

12

14

16

mmul lcs fir

A
p

p
li

ca
ti

o
n

 w
o

rk
 u

n
it

s
p

e
r

cy
cl

e

`

single-threaded
fine-grain

coarse-grain

Figure 23: Fine-grain performance: These graphs
compare the performance of our three implementation
styles. The graph on the left shows execution-time
speedup relative to the serial coarse-grain implementa-
tion. The graph on the right compares the work per cycle
achieved by each implementation measured in multiply-
accumulates for MMUL and FIR and in character com-
parisons for LCS.

threads. Each version is run to completion.
Figure 23 depicts the performance of each algorithm

executing on the 8x8 WaveCache described in Sec-
tion 5.3. On the left, it shows speedup over the serial
implementation, and, on the right, average units of work
completed per cycle. For MMUL and FIR, the unit of
work selected is a multiply-accumulate, while for LCS,
it is a character comparison. We use application-specific
performance metrics, because they are more informa-
tive than IPC when comparing the three implementa-
tions. For all three kernels, the unordered implementa-
tions achieve superior performance because they exploit
more parallelism.

The benefits stem from two sources. First, the un-
ordered implementations can use more threads. It would
be easy to write a pthread-based version that spawned
100s or 1000s of threads, but the WaveCache cannot ex-
ecute that many ordered threads at once, since there are
not enough store buffers. Secondly, within each thread
the unordered threads’ memory operations can execute
in parallel. As a result, the fine-grain, unordered im-
plementation exploit more inter- and intra-thread paral-
lelism. MMUL is the best example; it executes 27 mem-
ory operations per cycle on average (about one per ev-
ery two clusters), compared to just 6 for the coarse-grain
version.

FIR and LCS are less memory-bound thanMMUL
because they load values (input samples forFIR and
characters forLCS) from memory only once pass and
then pass them from thread to thread directly. For these
two applications the limiting factor is inter-cluster net-
work bandwidth. Both algorithms involves a great deal
of inter-thread communication, and since the computa-
tion uses the entire 8x8 array of clusters, inter-cluster
communication is unavoidable. ForLCS27% of mes-
sages travel across the inter-cluster network compared,
to 0.4-1% for the single-threaded and coarse-grain ver-
sions, and the messages move 3.6 times more slowly due
to congestion.FIR displays similar behavior. A better
placement algorithm could alleviate much of this prob-
lem and improve performance further by placing the in-
structions for communicating threads near one another.

6.2 Mixing threading models

In Section 5, we explained the extensions to WaveScalar
that support coarse-grain, pthread-style threads. In the
previous section, we introduced two lightweight mem-
ory instructions that enable fine-grain threads and un-
ordered memory. In this section, we combine these
two models; the result is a hybrid programming model
that enables coarse- and fine-grain threads to coexist
in the same application. We begin with two examples
that illustrate how ordered and unordered memory op-
erations can be used together. Then, we exploit all of
our threading techniques to improve the performance of
Spec2000’sequakeby a factor of nine.

6.2.1 Mixing ordered and unordered memory

A key strength of our ordered and unordered memory
mechanisms is their ability to coexist in the same ap-
plication. Sections of an application that have indepen-
dent and easily analyzable memory access patterns (e.g.,
matrix manipulations and stream processing) can use
the unordered interface, while difficult to analyze por-
tions (e.g., pointer-chasing codes) can use wave-ordered
memory. In this section, we take a detailed look at how
this is achieved.

We describe two ways to combine ordered and un-
ordered memory accesses. The first turns off wave-
ordered memory, uses the unordered interface, and then
reinstates wave-ordering. The second, more flexible ap-
proach allows the ordered and unordered interfaces to
exist simultaneously.

Example 1: Figure 24 shows a code sequence that
transitions from wave-ordered memory to unordered

31

ThreadToData

MemorySequenceStop

<t:w>.finished

<t:w>.v

<t:w>.t

MemorySequenceStart

<t:w>.w

WaveToData
<t:w>.t

Arbitrary unordered
code

Ordered Code

Ordered Code

Figure 24:Transitioning between memory interfaces:
The transition from ordered to unordered memory and
back again.

memory and back again. The process is quite simi-
lar to terminating and restarting a pthread-style thread.
At the end of the ordered code, a THREAD-TO-DATA

instruction extracts the current THREAD-ID, and a
MEMORY-SEQUENCE-STOP instruction terminates the
current memory ordering. MEMORY-SEQUENCE-STOP

outputs a value, labeledfinishedin the figure, after all
preceding wave-ordered memory operations have com-
pleted. Thefinishedtoken triggers the dependent, un-
ordered memory operations, ensuring that they do not
execute until the earlier, ordered-memory accesses have
completed.

After the unordered portion has executed, a
MEMORY-SEQUENCE-START creates a new, ordered
memory sequence using the THREAD-ID extracted pre-
viously. In principle, the new thread need not have the
same THREAD-ID as the original ordered thread. In
practice, however, this is convenient, as it allows val-
ues to flow directly from the first ordered section to the
second (the curved arcs on the left side of the figure)
without THREAD-ID manipulation instructions.

Example 2: In many cases, a compiler may be unable
to determine the targets of some memory operations.
The wave-ordered memory interface must remain intact
to handle these hard-to-analyze accesses. Meanwhile,
unordered memory accesses from analyzable operations
can simply bypass the wave-ordering interface. This ap-
proach allows the two memory interfaces to coexist in
the same thread.

Figure 25 shows how the MEMORY-NOP-ACK in-

struction from Section 5.2.1 allows programs to take ad-
vantage of this technique. Recall that MEMORY-NOP-
ACK is a wave-ordered memory operation that operates
like a memory fence instruction, returning a value when
it completes. We use it here to synchronize ordered and
unordered memory accesses. In functionfoo , the loads
and stores that copy*v into t can execute in parallel
but must wait for the store top, which could point to
any address. Likewise, the load from addressq cannot
proceed until the copy is complete. The wave-ordered
memory system guarantees that the store top, the two
MEMORY-NOP-ACKs, and the load fromq fire in the
order shown (top to bottom). The data dependences be-
tween the first MEMORY-NOP-ACK and the unordered
loads at left ensure the copy occurs after the first store.
The ADD instruction simply coalesces the outputs from
the two STORE-UNORDERED-ACK instructions into a
trigger for the second MEMORY-NOP-ACK that ensures
the copy is complete before the final load.

6.2.2 A detailed example: equake

To demonstrate that mixing the two threading styles
is not only possible but also profitable, we optimized
equake from the SPEC2000 [44] benchmark suite.
equakespends most of its time in the functionsmvp,
with the bulk of the remainder confined to a single loop
in the program’smainfunction. In the discussion below,
we refer to this loop inmainassim.

We exploit both ordered, coarse-grain and unordered,
fine-grain threads inequake. The key loops insim are
data independent, so we parallelized them, using coarse-
grain threads that process a work queue of blocks of it-
erations. This optimization improvesequake’s overall
performance by a factor of 1.6.

Next, we used the unordered memory interface to ex-
ploit fine-grain parallelism insmvp. Two opportuni-
ties present themselves. First, each iteration ofsmvp’s
nested loops loads data from several arrays. Since these
arrays are read-only, we used unordered loads to by-
pass wave-ordered memory, allowing loads from sev-
eral iterations to execute in parallel. Second, we tar-
geted a set of irregular cross-iteration dependences in
smvp’s inner loop that are caused by updating an ar-
ray of sums. These cross-iteration dependences make it
difficult to profitably coarse-grain-parallelize the loop.
However, the THREAD-COORDINATE instruction lets
us extract fine-grain parallelism despite these depen-
dences, since it efficiently passes array elements from
PE to PE and guarantees that only one thread can hold

32

struct {
int x,y;

} point;

foo(point *v, int *p, int *q)
{

point t;
*p = 0;
t.x = v->x;
t.y = v->y;

 return *q;
}

 St *p, 0 <0,1,2>

MemoryNopAck <1,2,3>

Ld v->x Ld v->y

St t.x St t.y

MemoryNopAck <2,3,4>

+

pv

Wave-ordered

Unordered

 Ld *q <3,4,5>

q

Figure 25:Using ordered and unordered memory together:A simple example where MEMORY-NOP-ACK is
used to combine ordered and unordered memory operations to express memory parallelism.

a particular value at a time. This idiom is inspired
by M-structures [37], a dataflow-style memory element.
Rewritingsmvpwith unordered memory and THREAD-
COORDINATE improves overall performance by a factor
of 7.9.

When both coarse-grain and fine-grain threading are
used together,equakespeeds up by a factor of 9.0.
This result demonstrates that coarse-grain, pthread-style
threads and fine-grain, unordered threads can be com-
bined to accelerate a single application.

7 Conclusion

The WaveScalar instruction set and WaveCache archi-
tecture demonstrate that dataflow processing is a worthy
alternative to the von Neumann model and conventional
scalar designs for both single- and multi-threaded work-
loads.

Like all dataflow ISAs, WaveScalar allows program-
mers and compilers to explicitly express parallelism
among instructions. Unlike previous dataflow models,
WaveScalar also includes a memory-ordering scheme,
wave-ordered memory, that allows it to efficiently exe-
cute programs written in conventional, imperative pro-
gramming languages.

WaveScalar’s multithreading facilities support a
range of threading styles. For conventional pthread-style
threads, WaveScalar provides thread creation and termi-
nation instructions, multiple, independent wave-ordered

memory orderings, and a lightweight, memoryless syn-
chronization primitive, and a memory fence that pro-
vides a relaxed consistency model. For finer threads,
WaveScalar can disable memory ordering for specific
memory accesses, allowing the programmer or compiler
to express large amounts of memory-parallelism, and
enabling a very fine-grain style of multithreading. Fi-
nally WaveScalar allows both types of threads to coexist
in a single application and interact smoothly.

The WaveCache architecture exploits WaveScalar’s
decentralized execution model to eliminate broadcast
communication and centralized control. Its tile-based
designs makes it scalable and significantly reduces the
architecture’s complexity. Our RTL model shows that
a WaveCache capable of running real-world, multi-
threaded applications would occupy only 253mm2 in
currently available process technology, while a single
threaded version requires only 28mm2.

Our experimental results show that the WaveCache
performs comparably to a modern out-of-order design
on average for single threaded codes. For multithreaded,
Splash2 benchmarks, the WaveCache achieves 30-83×
speedup over a single threaded versions, and outper-
forms a range of von Neumann-style multithreaded pro-
cessors by a wide margin. By exploiting our new un-
ordered memory interface, we demonstrated how hun-
dreds of fine-grain threads on the WaveCache can com-

33

plete up to 13 multiply-accumulates per cycle for se-
lected algorithm kernels. Finally, we combined all of
our new mechanisms and threading models to create a
multigranular parallel version of equake which is faster
than either threading model alone.

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and
D. Burger, “Clock rate versus IPC: The end of the road
for conventional microarchitectures,” in27th Interna-
tional Symposium on Computer Architecture, 2000.

[2] S. Swanson, K. Michelson, A. Schwerin, and M. Os-
kin, “WaveScalar,” inProceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, p. 291, 2003.

[3] J. B. Dennis, “A preliminary architecture for a basic
dataflow processor,” inProceedings of the 2nd Annual
Symposium on Computer Architecture, 1975.

[4] Arvind, “Dataflow: Passing the token.” ISCA Keynote,
June 2005.

[5] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek, “Fine-grain parallelism with minimal
hardware support: A compiler-controlled threaded ab-
stract machine,” inProceedings of the4th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 1991.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single as-
signment form and the control dependence graph,”ACM
Transactions on Programming Languages and Systems,
vol. 13, pp. 451–490, October 1991.

[7] A. L. Davis, “The architecure and system method of
DDM1: A recursively structured data driven machine,”
in Proceedings of the 5th Annual Symposium on Com-
puter Architecture, (Palo Alto, California), pp. 210–215,
IEEE Computer Society and ACM SIGARCH, April 3–
5, 1978.

[8] T. Shimada, K. Hiraki, K. Nishida, and S. Sekiguchi,
“Evaluation of a prototype data flow processor of the
sigma-1 for scientific computations,” inProceedings
of the 13th annual international symposium on Com-
puter architecture, pp. 226–234, IEEE Computer Soci-
ety Press, 1986.

[9] J. R. Gurd, C. C. Kirkham, and I. Watson, “The manch-
ester prototype dataflow computer,”Communications of
the ACM, vol. 28, no. 1, pp. 34–52, 1985.

[10] M. Kishi, H. Yasuhara, and Y. Kawamura, “Dddp-a dis-
tributed data driven processor,” inConference Proceed-
ings of the tenth annual international symposium on
Computer architecture, pp. 236–242, IEEE Computer
Society Press, 1983.

[11] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P.
Holmes, “The epsilon dataflow processor,” inProceed-
ings of the 16th annual international symposium on
Computer architecture, pp. 36–45, ACM Press, 1989.

[12] G. M. Papadopoulos and D. E. Culler, “Monsoon: an
explicit token-store architecture,” inProceedings of the
17th annual international symposium on Computer Ar-
chitecture, pp. 82–91, ACM Press, 1990.

[13] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
and R. A. Bringmann, “Effective compiler support for
predicated execution using the hyperblock,” inProceed-
ings of the 25th Annual International Symposium on Mi-
croarchitecture, (Portland, Oregon), pp. 45–54, IEEE
Computer Society TC-MICRO and ACM SIGMICRO,
December 1–4, 1992. SIG MICRO Newsletter 23(1–2),
December 1992.

[14] M. Beck, R. Johnson, and K. Pingali, “From control
flow to data flow,”Journal of Parallel and Distributed
Computing, vol. 12, pp. 118–129, 1991.

[15] M. Budiu, G. Venkataramani, T. Chelcea, and S. C.
Goldstein, “Spatial computation,”SIGPLAN Not.,
vol. 39, no. 11, pp. 14–26, 2004.

[16] S. Swanson, M. Mercaldi, A. Putnam, A. Petersen,
A. Schwerin, M. Oskin, and S. Eggers, “Balancing par-
allelism and sequentiality in dataflow models: Wave-
ordered memory,” Tech. Rep. UWCSE-2005-10-3, UW-
Computer Science and Engineering, 2005.

[17] R. Nagarajan, K. Sankaralingam, D. Burger, and
S. Keckler, “A design space evaluation of grid processor
architectures,” inProceedings of the 34th Annual Inter-
national Symposium on Microarchitecture, 2001.

[18] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, D. Burger, S. W. Keckler, and C. R. Moore,
“Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture,” inProceedings of the 30th an-
nual international symposium on Computer architec-
ture, 2003.

[19] W. Lee et al., “Space-time scheduling of instruction-
level parallelism on a Raw machine,” inProceedings of
the 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems ASPLOS-VIII, October 1998.

[20] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz, “Smart memories: a modular recon-
figurable architecture,” inProceedings of the 27th an-
nual international symposium on Computer architec-
ture, pp. 161–171, ACM Press, 2000.

[21] S. C. Goldstein and M. Budiu, “Nanofabrics:spatial
computing using molecular electronics,” inProceedings
of the 28th annual international symposium on Com-
puter architecture, pp. 178–191, 2001.

[22] W. J. Dally and C. L. Seitz, “Deadlock-free message
routing in multiprocessor interconnection networks,”
IEEE Trans. Comput., vol. 36, no. 5, pp. 547–553, 1987.

[23] “A performance model to guide instruction scheduling
on spatial computers.” In submission to CGO 2006.

[24] D. E. Culler, Managing Parallelism and Resources
in Scientific Dataflow Programs. PhD thesis, Mas-
sachusetts Institute of Technology, March 1990.

[25] A. Putnam, S. Swanson, M. Mercaldi, K. Michelson,
A. Petersen, A. Schwerin, M. Oskin, and S. Eggers,
“The microarchitecture of a pipelined wavescalar pro-
cessor: An RTL-based study,” Tech. Rep. UWCSE-
2005-10-2, UW-Computer Science and Engineering,
2005.

[26] “Silicon design chain cooperation enables
nanometer chip design.” Cadence Whitepaper.
http://www.cadence.com/whitepapers/.

[27] “Cadence website.” http://www.cadence.com.

34

[28] M. S. Hrishikesh, D. Burger, N. P. Jouppi, S. W. Keck-
ler, K. I. Farkas, and P. Shivakumar, “The optimal logic
depth per pipeline stage is 6 to 8 fo4 inverter delays,”
in Proceedings of the 29th annual international sympo-
sium on Computer architecture, pp. 14–24, IEEE Com-
puter Society, 2002.

[29] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,
and T. Austin, “A systematic methodology to com-
pute the architectural vulnerability factors for a high-
performance microprocessor,” inMICRO 36: Proceed-
ings of the 36th annual IEEE/ACM International Sym-
posium on Microarchitecture, (Washington, DC, USA),
p. 29, IEEE Computer Society, 2003.

[30] R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-
alpha: a validated, execution-driven alpha 21264 simu-
lator,” Tech. Rep. TR-01-23, UT-Austin Computer Sci-
ences, 2001.

[31] A. J. et. al., “A 1.2ghz alpha microprocessor with
44.8gb/s chip pin bandwidth,” inIEEE International
Solid-State Circuits Conference, vol. 1, pp. 240–241,
2001.

[32] K. Krewel, “Alpha ev7 processor: A high-performance
tradition continues,” Microprocessor Report, April
2005.

[33] S. V. Adve and K. Gharachorloo, “Shared memory con-
sistency models: a tutorial,”IEEE Computer, vol. 29,
pp. 66–76, Dec. 1996.

[34] J. R. Goodman, M. K. Vernon, and P. J. Woest,
“Efficent synchronization primitives for large-scale
cache-coherent multiprocessors,” inProceedings of the
Third International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, (Boston, Massachusetts), pp. 64–75, 1989.

[35] D. Tullsen, J. Lo, S. Eggers, and H. Levy, “Support-
ing fine-grain synchronization on a simultaneous multi-
threaded processor,” inProceedings of the 5th Interna-
tionalSymposium on High Performance Computer Ar-
chitecture, 1999.

[36] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter,
A. Chang, and W. S. Lee, “Exploiting fine-grain thread
level parallelism on the MIT multi-ALU processor,” in
ISCA, pp. 306–317, 1998.

[37] P. S. Barth, R. S. Nikhil, and Arvind, “M-structures: Ex-
tending a parallel, non-strict, functional languages with
state,” Tech. Rep. MIT/LCS/TR-327, MIT, 1991.

[38] T. Shimada, K. Hiraki, and K. Nishida, “An architecture
of a data flow machien and its evaluation,” inDigest
of Papers, COMPCON Spring 84, pp. 486–490, IEEE,
1984.

[39] G. M. Papadopoulos and K. R. Traub, “Multithread-
ing: A revisionist view of dataflow architectures,” in
Proceedings of the 18th Annual International Sympo-
sium on Computer Architecture, (Toronto, Ontario),
pp. 342–351, ACM SIGARCH and IEEE Computer So-
ciety TCCA, May 27–30, 1991.Computer Architecture
News,19(3), May 1991.

[40] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M.
Tullsen, and S. J. Eggers, “Converting thread-level par-
allelism to instruction-level parallelism via simultane-
ous multithreading,”ACM Trans. Comput. Syst., vol. 15,
no. 3, pp. 322–354, 1997.

[41] M. Ekman and P. Stenström, “Performance and power
impact of issue-widt h in chip-multiprocessor cores,” in
International Conference on Paralllel Processing, 2003.

[42] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen,
and K. Olukolun, “The stanford hydra CMP,”IEEE Mi-
cro, vol. 20, march/april 2000.

[43] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese, “Piranha: A scalable architec-
ture based on single-chip multiprocessing,” inPro-
ceedings of the 27th Annual International Sympo-
sium on Computer Architecture, (Vancouver, British
Columbia), pp. 282–293, IEEE Computer Society and
ACM SIGARCH, June 12–14, 2000.Computer Archi-
tecture News,28(2), May 2000.

[44] SPEC, “Spec CPU 2000 benchmark specifications.”
SPEC2000 Benchmark Release, 2000.

35

