
Memory Consistency
A Crash Course

Brandon Lucia
CSE 471

Myers

Memory Consistency
Model

“Defines the value a read operation may read
at each point during the execution”

Informal Definition:

Memory Consistency
Model

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

Informal Definition:

Memory Consistency
Model

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Informal Definition:

Review: Coherence

Wr X

Wr X

2 Invariants:

1) “One Writer or
One or More Readers”

2) “Reading X gets the value
of the last write to X”Rd X

Review: Coherence

2 Invariants:

1) “One Writer or
One or More Readers”

2) “Reading X gets the value
of the last write to X”

Wr X

Wr X

Rd X

I wrote
X last

Blue
wrote X

last

Without Coherence

Wr X Wr X

Rd X

Which
X?!

Cache XCache X

(The coherence invariants prevent this from happening)

Processors can’t decide who wrote last.
Green is hosed.

Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location

Wr X

Wr X
OR

Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of
accesses to multiple memory locations

Wr X

Wr Y
OR

Expectation

X=1

r1=Y

Y=1

r2=X

Program
Initially X == Y == 0

Which final values of {r1, r2}
are possible?

Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Instructions are
executed in program

order

All processors agree
on a total order of

executed instructions

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X

Why is SC Important?
Who cares?.... You care!

Intuitive (SC)
Wr X
Rd Y
Wr Y
Rd X
Rd X

Weird (not SC)

Wr X
Rd Y

Wr Y
Rd X
Rd X

Wr X

Rd Y

Wr Y

Rd X

Rd X

SC prohibits all reordering of instructions (Invariant 1)

SC is how programmers think.

Why are Instructions Reordered?
And when does it matter anyway?

Why are Instructions Reordered?

Optimization.

Reordering #1: Write Buffers
Execution

M M

CPU can read its write
buffer, but not others’

Buffered writes eventually end up in coherent
shared memory

Coherent

CPU CPU

Write BufferWrite Buffer

Reordering #1: Write Buffers
Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

Reordering #1: Write Buffers
Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

r1 == r2 == 0 is not SC, but it can happen with write buffers

Reordering #1: Write Buffers

Execution

r1=Y

Y=1

r2=X

M M

Program
Initially X == Y == 0

X=1

Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program
Initially X == Y == 0

X=1

Y=1

Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program
Initially X == Y == 0

X=1 Y=1

Reordering #1: Write Buffers

Execution

r2=X

M M

Program
Initially X == Y == 0

X=1 Y=1

r1=Y

Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1 Y=1

r1=Y r2=X

Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1 Y=1

r1=Y [r1 <- 0]

r2=X

Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1 Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

WBs let reads finish
before older writes (Not SC!)

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

4 word cache line

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

X=1

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Z=1

Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalescing Write Buffer
X=1

Y=1

Z=1
Coalesce

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1

Reordering #3: Compilers

for (i .. 100)
X = 1 X = 0
print x

X = 0

Compiler for (i .. 100)
X = 1

X = 0
print x

Been
hoisted!

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)

When is Reordering a Problem?

When is Reordering a Problem?

When Executions Aren’t SC

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the
execution is not SC

When a memory operation happens before itself

So... are Computers Wrong?!

SC is how programmers think.

SC prohibits all reordering of instructions

WBs let reads finish before older writes

Combining writes saves bandwidth but reorders writes

Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC

x86-TSO (intel x86s)

“The Write Buffer Memory Model”

X=1

r1=Y

r1=Y

Total Store Order - loads may complete before older
stores to different locations complete.

Relaxes W->R
order

PSO(SPARC)

“The Write Combining Memory Model”

X=1

Partial Store Order - loads and stores may complete
before older stores to different locations complete.

Y=1
Z=1

Z=1 Relaxes W->W
order

In General

X=1

Y=1
Z=1

Z=1X=1

r1=Y

r1=Y
r2=X

r1=Y

r1=Y

W->W

r2=X

Y=1

Y=1

R->R R->WW->R

Starting with PSO and relaxing R->R and R->W yields
Weak Ordering or Release Consistency (alpha)

Depending on the implementation

SC and Relaxed Consistency

SC is required for correctness and programmer sanity

Reordering is required* for performance

Goal: Ensure SC executions while permitting
Relaxed Consistency reorderings

+

*Usually; the MIPS memory model is SC (surprising!)

How to ensure SC, but permit
reordering?

Synchronization Prevents
Reordering

X=1

r1=Y

r1=Y

Memory Fence

Fence implementation depends on reordering implementation

Memory fences are another type of synchronization

Reordering prevented

Synchronization Prevents
Reordering

X=1

r1=Y

r1=Y

Memory Fence

Fence implementation depends on reordering implementation

Memory fences are another type of synchronization

Reordering prevented

TSO: Stall reads until write buffer is empty

Synchronization For Real
Programmers

X=1

r1=Y

r1=Y

Unlock

Memory fences are wrapped up in locks, etc.

Reordering prevented

Direct use of fences possible, but inadvisable.
USE A SYNCHRONIZATION LIBRARY

Lock

Data Races

Y=1
Unlock

Synchronization imposes happens-before on otherwise
unordered operations

Data Race: Unordered operations to the same memory
location, at least one a write

Lock

r1=Y
Unlock

Lock
HB Order: Data race prevented

Memory Models across the
System Stack

Language Compiler Architecture

Java/C++: SC
for data-race-
free programs

Conservative
with reordering
when d-r-f can’t

be proved

Usually very weak for
max optimization

(lots of reordering)

Note: fences from
“above” ensure SC

