Multithreaded Architectures

Multiprocessors
» multiple threads execute on different processors

Multithreaded processors
» multiple threads execute on the same processor

Spring 2013 471 - Multithreaded Processors 1

Motivation for Multithreaded Architectures

Performance, again.
Past: performance suffered from a particular source of latency

Today: all sources of latency
Individual processors not executing code at their hardware potential
despite increasingly complex parallel hardware
* increase in instruction issue bandwidth & number of functional units
+ out-of-order execution
+ techniques for decreasing/hiding branch & memory latencies

» for example: processor utilization was decreasing & instruction
throughput not increasing in proportion to the increase in issue
width

Spring 2013 471 - Multithreaded Processors

4/23/2013

Motivation for Multithreaded Architectures

1oo—=———————_- o -
o =l H L

@ I I B mem conflict

s & = | (= Hlong fp

5‘ 7o ||] O shortfp

W H Hlong int

2| e mjd M shortint

= i I Eload delays

E * : 1 I O control hazards
| a0 = N H branchmispred
E I B dcache miss

E 3¢ = = ! M icache miss

= - = M dtlbmiss

S| -l I3 M itlb mi

£ u itlb miss
5': 10 B processor busy

°74 - E IE EEIR
Applications

Spring 2013 471 - Multithreaded Processors

Motivation for Multithreaded Architectures

Major cause of low instruction throughput:
* more complicated than a particular source of latency
+ the lack of instruction-level parallelism in a single executing thread

Therefore the solution:

* has to be more general than building a smarter cache or a more
accurate branch predictor

* has to involve more than one thread

Spring 2013 471 - Multithreaded Processors

4/23/2013

Multithreaded Processors

Multithreaded processors

+ execute instructions from multiple threads

» execute multiple threads without software context switching

» hardware support

+ holds processor state for more than one thread of execution

* registers
« PC
+ each thread’s state is a hardware context

Spring 2013 471 - Multithreaded Processors

Multithreaded Processors

Effect on performance: higher instruction throughput
» threads hide latencies for each other

+ utilize thread-level parallelism (TLP) to compensate for low
single-thread ILP

* may degrade latency of individual threads
(but improves the execution time of all threads (by increasing
instruction throughput)

Spring 2013 471 - Multithreaded Processors

4/23/2013

Traditional Multithreading

Traditional multithreaded processors hardware switch to a different
context to avoid processor stalls

Two styles of traditional multithreading

Each trades off single thread latency vs. multiple thread throughput in a
different way

1. coarse-grain multithreading
2. fine-grain multithreading

Spring 2013 471 - Multithreaded Processors

Traditional Multithreading

Coarse-grain multithreading
+ switch on a long-latency operation (e.g., L2 cache miss)
+ another thread executes while the miss is handled
* modest increase in instruction throughput
» doesn’t hide latency of short-latency operations
* no switch if no long-latency operations
* need to fill the pipeline on a switch
» potentially no slowdown to the thread with the miss,
if stall is long, pipeline is short & switch back fairly promptly
» Denelcor HEP, IBM RS64 Il, IBM Northstar/Pulsar

Spring 2013 471 - Multithreaded Processors

4/23/2013

Fine-grain multithreading
can switch to a different thread each cycle (usually round robin)
hides latencies of all kinds

larger increase in instruction throughput but slows down the
execution of each thread

Cray MTA

Spring 2013

Traditional Multithreading

471 - Multithreaded Processors

<+— Time (proc cycles)

Simultaneous Multithreading

Issue Slots

EEEE
OO

BEOUECEN
I imiml |
ONEECCE
OEEfO0ON

CMP reduces
horizontal waste

<= Time (proc cycles)

Issue Slots

[
[
[
[

EEEEEEE
EEE/EEE
OEECOm]
H | |ninnin

[
[
[
[

FGMT reduces
vertical waste

471 - Multithreaded Processors

10

4/23/2013

Simultaneous Multithreading (SMT)

Third style of multithreading, different concept
3. simultaneous multithreading (SMT)
* no hardware context switching

» same-cycle multithreading: can issue multiple instructions
from multiple threads each cycle

 huge boost in instruction throughput with less degradation to
individual threads

+ Intel Core i7 (Hyperthreading); IBM Power7, BlueGene/Q

Spring 2013 471 - Multithreaded Processors

1

Simultaneous Multithreading

Issue Slots Issue Slots Issue Slots
s EEEE 3 EECC] ; EEEE
s OO0d S EECD0 < EEEE
c HNE N o HEEO oc HHENRE
SEO00 £ EEQD : EEEDD
- OOooo0 Y EQ0D0 T EEED
E HEN[] EHEENE £ EEENR
- O0OEE FEEEE T EEENR

LI [N I EEEN

HE] EEL] EECN

1
CMP reduces FGMT reduces SMT reduces
horizontal waste vertical waste both

471 - Multithreaded Processors

12

4/23/2013

Cray (Tera) MTA

Goals
* uniform memory access
+ lightweight synchronization
» heterogeneous parallelism

Spring 2013 471 - Multithreaded Processors 13

Cray MTA

Fine-grain multithreaded processor
+ can switch to a different thread each cycle
+ switches to ready threads only
* up to 128 hardware contexts/processor

* lots of latency to hide, mostly from the multi-hop
interconnection network

+ average instruction latency for computation: 22 cycles
(i.e., 22 instruction streams needed to keep functional units
busy)

 average instruction latency including memory: 120 to 200-
cycles
(i.e., 120 to 200 instruction streams needed to hide all latency,
on average)

» processor state for all 128 contexts
* GPRs (total of 4K registers!)
* status registers (includes the PC)
+ branch target registers

Spring 2013 471 - Multithreaded Processors 14

4/23/2013

Cray MTA

Interesting features
* No processor-side data caches

* increases the latency for data accesses but reduces the
variation between memory ops

+ to avoid having to keep caches coherent
* memory-side buffers instead
* L1 & L2 instruction caches
* instructions have more locality & have no coherency problem
+ prefetch fall-through & target code

Spring 2013 471 - Multithreaded Processors 15

Cray MTA

Interesting features
* no paging
+ want pages pinned down in memory for uniform latency
* page size is 256MB

* VLIW instructions
* memory/arithmetic/branch
* need a good code scheduler
* load/store architecture

Spring 2013 471 - Multithreaded Processors 16

4/23/2013

Cray MTA

Interesting features

» Trade-off between avoiding memory bank conflicts &
exploiting spatial locality for data

+ conflicts:
» memory distributed among processing elements (PEs)
* memory addresses are randomized to avoid conflicts
+ want to fully utilize all memory bandwidth
* locality:
* run-time system can confine consecutive virtual addresses to a
single (close-by) memory unit

Spring 2013 471 - Multithreaded Processors 17

Cray MTA

Interesting features
+ tagged memory, i.e., fulllempty bits
« indirectly set full/empty bits to prevent data races

+ prevents a consumer from loading a value before a
producer has written it

+ prevents a producer from overwriting a value before a
consumer has read it

+ example for the consumer:
+ set to empty when producer instruction starts executing

« consumer instructions block if try to read the producer
value

+ set to full when producer writes value
* consumers can now read a valid value

Spring 2013 471 - Multithreaded Processors 18

4/23/2013

Cray MTA

Interesting features
» tagged memory, i.e., full/empty bits
+ explicitly set full/empty bits for cheap thread synchronization
+ primarily used accessing shared data

+ very fine-grain synchronization (on the level of a data
word)

* locking: read memory location & set to empty
+ other readers are blocked
* unlocking: write memory location & set to full

Spring 2013 471 - Multithreaded Processors 19

SMT: The Executive Summary

Simultaneous multithreaded (SMT) processors combined designs
from:

« traditional multithreaded processors

« multiple per-thread hardware context
« out-of-order superscalar processors

» wide instruction issue

« dynamic instruction scheduling

* hardware register renaming

471 - Multithreaded Processors

4/23/2013

10

SMT: The Executive Summary

The combination was a processor with two important capabilities.

1) same-cycle multithreading: issues & executes instructions from
multiple threads each cycle

=> converting thread-level parallelism (TLP) to
cross-thread instruction-level parallelism (ILP)

Functional Units

471 - Multithreaded Processors

SMT: The Executive Summary

The combination was a processor with two important capabilities.

2) thread-shared hardware resources, both logic & memories

Threads
| Fetch Logic
Instruction Queue
a[alalt
[Functional Units
oom

Spring 2013 22

471 - Multithreaded Processors

4/23/2013

11

Performance Implications

SPEC95
SPEC2000
Splash 2
TPC B
TPCD
Apache
(OF)

471 - Multithreaded Processors 23

Does this Processor Sound Familiar?

Technology transfer =>
« 2-context Intel Pentium 4; Xeon; Core i5, i7; Atom
(Hyperthreading)
» 2-context IBM Power5 & Power6; 4-context IBM Power7 (8 cores)
& BlueGene/Q (16 cores)

* 4-context Compaq 21464

Spring 2013 471 - Multithreaded Processors 24

4/23/2013

12

An SMT Architecture

Three primary goals for this architecture:

1. Achieve significant throughput gains with multiple threads

2. Minimize the performance impact on a single thread executing
alone

3. Minimize the microarchitectural impact on a conventional out-of-
order superscalar design

Spring 2013 471 - Multithreaded Processors 25
Implementing SMT
Fetch FTTTT FP ’
unit e oo F . e fegist FP |
. instruction queue regislers units
[|
T Data
+ cache
Instruction cache TTTTT
integer L slinteger i
Ll ' ! intfldg
- b mstrLlJolnclJnl qlueue registers " Units
F B
Register
Decode |—w MENaMing —
logic

Spring 2013 471 - Multithreaded Processors 26

4/23/2013

13

Implementing SMT

No special hardware for scheduling instructions from multiple
threads

* use the hardware register renaming & dynamic instruction
scheduling mechanisms as a superscalar

* register renaming hardware eliminates false dependences both
within a thread (just like a superscalar) & also between threads

How it works:

* map thread-specific architectural registers onto a pool of thread-
independent physical registers

» operands are thereafter called by their physical names

* aninstruction is issued when its operands become available & a
functional unit is free

* instruction scheduler not have to consider thread IDs when
dispatching instructions to functional units
(unless threads have different priorities)

Spring 2013 471 - Multithreaded Processors

From Superscalar to SMT

Extra pipeline stages for accessing thread-shared register files
» 8 hardware contexts * 32 registers + renaming registers

SMT instruction fetcher (ICOUNT chooser)
« fetch from 2 threads each cycle

+ count the number of instructions for each thread in the pre-
execution stages

* pick the 2 threads with the lowest number
» in essence fetching from the two highest throughput threads

Spring 2013 471 - Multithreaded Processors

28

4/23/2013

14

From Superscalar to SMT

Per-thread hardware

* small stuff
all part of current out-of-order processors
none endangered the cycle time

1. other per-thread processor state, e.g.,

* program counters

* return stacks

+ thread identifiers, e.g., with BTB entries, TLB entries
. per-thread bookkeeping for, e.g.,

* instruction queue flush on branch mispredictions

* instruction commit

* trapping

N

This is why there is only a 15% increase in chip area on a 4 hardware-
context Alpha 21464.

Spring 2013 471 - Multithreaded Processors 29

Implementing SMT

Thread-shared hardware:
+ fetch buffers
* branch target buffer
 instruction queues
+ functional units
+ all caches (physical tags)
* TLBs
+ store buffers & MSHRs

Thread-shared hardware is why there is little single-thread performance
degradation (~1.5%).

What hardware might you not want to share?

Spring 2013 471 - Multithreaded Processors 30

4/23/2013

15

Implementing SMT

Does thread-shared hardware cause more conflicts?
« 2X more data cache misses

Does it matter?

» threads hide miss latencies for each other
« data sharing

Spring 2013 471 - Multithreaded Processors

31

SMT

Interesting features
» thread-blind instruction scheduling

» thread chooser for instruction fetching

* hardware queuing locks for cheap synchronization
+ orders of magnitude faster because does not access memory

+ can parallelize previously unparallelizable codes

» software-directed register deallocation

+ communicate last-use information to HW for early register
deallocation

* now need fewer renaming registers

Spring 2013 471 - Multithreaded Processors

32

4/23/2013

16

What does SMT change?

1. Costs of data sharing

CMPs
Threads reside on distinct processors & inter-thread communication
is a big overhead.

Parallelizing compilers attempt to decompose applications to
minimize inter-processor communication.

Disjoint set of data & iterations for each thread

SMT
Threads execute on the same processor with thread-shared
hardware.
Inter-thread communication incurs no overhead.

Spring 2013 471 - Multithreaded Processors 33

SMT Compiler Strategy

No special SMT-centered compilation is necessary

However, if optimizations focused on data sharing, not data isolation,
might SMT do better?

Spring 2013 471 - Multithreaded Processors 34

4/23/2013

17

Tiling Example

/* matrix multiple before */

for (i=0; i<n;

for (3=0;
r
for

x[1i,7]

’

i=i+1)
j<n; j=j+1){
— O-

(k=0; k<n; k=k+1) {
r=r1r+ yli,k] * z[k,J]; }
= r;

/* matrix multiply after tiling */

for (33=0; Jji<n;
for (kk=0; kk<n;

for (i=0; i<n;

J3=33+T)
kk=kk+T)

i=i+1)

for (3J=33j; J<min(jj+T-1,n); Jj=j+1) {
r = 0;
for (k=kk; k<min (kk+T-1,n); k=k+1)

{r =r + yli, k]l * z[k, 317 }

x[1i,3] = x[i,3] + r;
7
Spring 2013 471 - Multithreaded Processors 35
Tiling

o) (0] e o
O(@|0|®

Q2|®|@
®© 0 6 0

Blocked

SOLIOZIOZI0:

HOHHE ()8

Cyclic

Spring 2013

The Normal Way (blocked):
Tiled to exploit data reuse, separate tiles/thread

Often works, except when: large number of threads,
large number of arrays, small data cache

Issue of tile size sweet spot

The SMT-friendly Way (cyclic)

Threads share a tile so there is less pressure on the
data cache

471 - Multithreaded Processors 36

4/23/2013

18

Tiling

The Normal Way (blocked):
Tiled to exploit data reuse, separate tiles/thread

Often works, except when: large number of threads,
large number of arrays, small data cache

Issue of tile size sweet spot

(D
@
@)
()

@@@@
LNl @ | @ [
9 [Bl[2)[e

Blocked

The SMT-friendly Way (cyclic)

Threads share a tile so there is less pressure on the
data cache

Less sensitive to tile size
« tiles can be large to reduce loop control overhead
» cross-thread latency hiding hides misses

Cyclic * more adaptable to different cache configurations

Spring 2013 471 - Multithreaded Processors 37

Multicore vs. Multithreading

If you wanted to execute multiple threads, would you build a:
» Multicore with multiple, simple pipelines?

* SMT with a single, higher performance pipeline?

» Both together?

Spring 2013 471 - Multithreaded Processors 38

4/23/2013

19

Multicore vs. Multithreading

If you wanted to execute multiple threads, would you build a:

» Multicore with multiple, separate pipelines?
» simple, easy to design, build, test
» probably faster clock
» power? turn off unused cores

» SMT with a single, larger pipeline?
* better performance from same-cycle multithreading
* better power/performance ratio

» Both together?

Intel Nehalem (Core-i7): up to 8 cores, 16 SMT threads
4-context IBM Power7 (8 cores)

Spring 2013 471 - Multithreaded Processors 39

Important Issues

Multithreaded processors
+ what are they?
» what problem do they solve?
* hardware support
4t through-put vs. latency trade-off

Coarse-grain vs. fine-grain vs. simultaneous multithreading

Spring 2013 471 - Multithreaded Processors 40

4/23/2013

20

Important Issues

» what are its goals & how are they met?
 full-empty bits vs. locks vs. transactional memory

+ what is it?
» what are its goals & how are they met?

« what extra hardware is needed, what extra hardware is not
needed?

* how does it do synchronization?

Matching hardware & compiler optimizations

Spring 2013 471 - Multithreaded Processors

41

4/23/2013

21

