
1

Spring 2013 CSE 471 Review of Pipelines 1

Instruction-Level Parallelism (ILP)

Fine-grained parallelism

Obtained by:

• instruction overlap in a pipeline

• executing instructions in parallel (later, with multiple instruction

issue)

In contrast to:

• loop-level parallelism (medium-grained)

• thread-level or task-level or process-level parallelism (coarse-

grained)

Spring 2013 CSE 471 Review of Pipelines 2

Instruction-Level Parallelism (ILP)

Can be exploited when instructions are independent of one another

• two instructions are independent if their operands are different

• an example of independent instructions

ld R1, 0(R2)

or R7, R3, R8

2

Spring 2013 CSE 471 Review of Pipelines 3

Dependences

data dependence: arises from the flow of values through programs

• consumer instruction gets a value from a producer instruction

• determines the order in which instructions can be executed

name dependence: instructions use the same register but no flow of data

between them

• anti-dependence

• output dependence

ld R1, 32(R3)

add R3, R1, R8

ld R1, 32(R3)

add R3, R1, R8

 ld R1, 16(R3)

Spring 2013 CSE 471 Review of Pipelines 4

Dependences

control dependence

• arises from the flow of control

• instructions after a branch depend on the value of the branch’s

condition variable

beqz R2, target

ld r1, 0(r3)

target:

add r1, ...

3

Spring 2013 CSE 471 Review of Pipelines 5

Instruction-Level Parallelism (ILP)

ILP is important for executing instructions in parallel and hiding latencies

• each thread (program) has very little ILP

• dependences inhibit ILP

• tons of techniques to increase it

Spring 2013 CSE 471 Review of Pipelines 6

Pipelining

Implementation technique (but it is considered part of the architecture)

• overlaps execution of different instructions

• execute all steps in the execution cycle simultaneously, but on

different instructions

Exploits ILP by executing several instructions “in parallel”

Goal is to increase instruction throughput

4

Spring 2013 CSE 471 Review of Pipelines 7

Pipelining

Spring 2013 CSE 471 Review of Pipelines 8

Pipelining

Not that simple!

• pipeline hazards (structural, data, control)

• place a “soft limit” on the number of stages

• increase instruction latency (a little)

• write & read pipeline registers for data that is computed in a

stage

• all stages are the same length which is determined by the

longest stage

• stage length determines clock cycle time

• time for clock & control lines to reach all stages

IBM Stretch (1961): the first general-purpose pipelined computer

5

Spring 2013 CSE 471 Review of Pipelines 9

Structural Hazards

Cause: instructions in different stages want to use the same resource in

the same cycle

e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:

• more hardware (eliminate the hazard)

• stall (so still execute correct programs)

• less hardware, lower cost

• only for big hardware components

Spring 2013 CSE 471 Review of Pipelines 10

6

Spring 2013 CSE 471 Review of Pipelines 11

Data Hazards

Cause:

• an instruction early in the pipeline needs the result produced by an

instruction farther down the pipeline before it is written to a register

• would not have occurred if the implementation was not pipelined

Types

RAW (data), WAR (name: anti-dependence), WAW (name: output)

HW solutions

• forwarding hardware (eliminate the hazard)

• stall via pipelined interlocks if can’t forward

Compiler solution

• code scheduling (for loads)

Spring 2013 CSE 471 Review of Pipelines 12

Dependences vs. Hazards

7

Spring 2013 CSE 471 Review of Pipelines 13

Forwarding Example

Spring 2013 CSE 471 Review of Pipelines 14

Forwarding

Forwarding (also called bypassing):

• output of one stage (the result in that stage’s pipeline register) is

bused (bypassed) to the input of a previous stage

• why forwarding is possible

• results are computed 1 or more stages before they are written

to a register

• at the end of the EX stage for computational instructions

• at the end of MEM for a load

• results are used 1 or more stages after registers are read

• if you forward a result to an ALU input as soon as it has been

computed, you can eliminate the hazard or reduce stalling

8

Spring 2013 CSE 471 Review of Pipelines 15

Forwarding Implementation

Forwarding unit checks to see if values must be forwarded:

• between instructions in ID and EX

• compare the R-type destination register number in EX/MEM

pipeline register to each source register number in ID/EX

• between instructions in ID and MEM

• compare the R-type destination register number in MEM/WB

to each source register number in ID/EX

If a match, then forward the appropriate result values to an ALU source

• bus a value from EX/MEM or MEM/WB to an ALU source

Spring 2013 CSE 471 Review of Pipelines 16

9

Spring 2013 CSE 471 Review of Pipelines 17

Forwarding Hardware

Hardware to implement forwarding:

• destination register number in pipeline registers

(but need it anyway because we need to know which register to

write when storing an ALU or load result)

• source register numbers

(probably only one, e.g., rs on MIPS R2/3000) is extra)

• a comparator for each source-destination register pair

• buses to ship data - the BIG cost

• buses to ship register numbers

• larger ALU MUXes for 2 bypass values

Spring 2013 CSE 471 Review of Pipelines 18

Loads

Loads

• data hazard caused by a load instruction & an immediate use of the

loaded value

• forwarding won’t eliminate the hazard -- why?

• 2 solutions used together

• stall via pipelined interlocks

• compiler schedules independent instructions into the load

delay slot

(This is a reason that pipelines are part of the architecture: the

pipeline structure is exposed to the compiler.)

10

Spring 2013 CSE 471 Review of Pipelines 19

Loads

Spring 2013 CSE 471 Review of Pipelines 20

Implementing Pipelined Interlocks

Detecting a stall situation

Hazard detection unit stalls the use after a load

• is the instruction in EX a load?

• does the destination register number of the load = either source

register number in the next instruction?

• compare the load write register number in ID/EX to each read

register number in IF/ID

 if yes, stall the pipe 1 cycle

11

Spring 2013 CSE 471 Review of Pipelines 21

Implementing Pipelined Interlocks

How stalling is implemented:

• nullify the instruction in the ID stage, the one that consumes the
loaded value

• change EX, MEM, WB control signals in ID/EX pipeline register
to 0

• the instruction in the ID stage will have no side effects as it
passes down the pipeline

• repeat the instructions in ID & IF stages

• disable writing the IF/ID pipeline register - the load consumer
instruction will be decoded & its registers read again

• disable writing the PC - the same instruction will be fetched
again

Spring 2013 CSE 471 Review of Pipelines 22

Loads

hazard detection

fetch again

decode again

12

Spring 2013 CSE 471 Review of Pipelines 23

Implementing Pipelined Interlocks

Hardware to implement stalling:

• rt register number in ID/EX pipeline register

(but need it anyway because we need to know what register to

write when storing load data)

• both source register numbers in IF/ID pipeline register

(already there)

• a comparator for each source-destination register pair

• buses to ship register numbers

• write enable/disable for PC

• write enable/disable for the IF/ID pipeline register

• a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway

Spring 2013 CSE 471 Review of Pipelines 24

Control Hazards

Cause: condition & target determined after next fetch

Early HW solutions

• stall

• assume an outcome & flush pipeline if wrong

• move branch resolution hardware forward in the pipeline

Compiler solutions

• code scheduling

• static branch prediction

Today’s HW solutions

• dynamic branch prediction

