
1

Spring 2014 CSE 471 - Dynamic Branch

Prediction

1

Control Hazards

The nub of the problem:

• In what pipeline stage does the processor fetch the next

instruction?

• If that instruction is a conditional branch, when does the processor

know whether the conditional branch is taken (execute code at the

target address) or not taken (execute the sequential code)?

• What is the difference in cycles between them?

The cost of stalling until you know which way to branch

• number of cycles in between these 2 stages * branch frequency =

the contribution to CPI due to branches

Predict the branch outcome to avoid stalling

Spring 2014 CSE 471 - Dynamic Branch

Prediction

2

Branch Prediction

Branch prediction:

• Resolve a branch hazard by predicting which path will be taken

• Proceed under that assumption

• If the prediction is correct, avoid delay of the branch hazard

• If the prediction is incorrect, flush the wrong-path instructions from
the pipeline & fetch the right path

Performance improvement depends on:

• how often the prediction is correct
(producing correct predictions is most of the innovation)

• how soon you can check the prediction

2

Spring 2014 CSE 471 - Dynamic Branch

Prediction

3

Branch Prediction

Dynamic branch prediction:

• the prediction is determined at runtime & changes as program
behavior changes

• branch prediction mechanism implemented in hardware

• common algorithm based on branch history

• predict the branch taken if branched the last time

• predict the branch not-taken if didn’t branch the last time

Alternative: static branch prediction

• compiler-determined prediction

• fixed for the life of the program

• A likely algorithm?

Spring 2014 CSE 471 - Dynamic Branch

Prediction

4

Branch Prediction Buffer

Branch prediction buffer (BPB)

• small memory indexed by the lower bits of the address of a branch
instruction during the fetch stage

• contains a 1-bit prediction
(which path the last branch to index to this BPB location took)

• do what the prediction says to do

• if the prediction is taken & it is correct

• only incur a one-cycle penalty (in our 5-stage pipeline)- why?

• if the prediction is not taken & it is correct

• incur no penalty - why?

• if the prediction is incorrect

• change the prediction

• also flush the pipeline

• penalty is the same as if there were no branch prediction

3

Spring 2014 CSE 471 - Dynamic Branch

Prediction

5

Two-bit Prediction

A single prediction bit does not work well with loops

• mispredicts the first & last iterations of a nested loop

Two-bit branch prediction for loops

• Algorithm: have to be wrong twice in a row before prediction is changed

Spring 2014 CSE 471 - Dynamic Branch

Prediction

6

Two-bit Prediction

Works well when branches predominantly go in the same direction

• A second check is made to make sure that a short & temporary
change of direction does not change the prediction away from
the dominant direction

• Why does it work?

• What architecture design principle is involved?

4

Spring 2014 CSE 471 - Dynamic Branch

Prediction

7

Is Branch Prediction More Important Today?

Think about:

• Is the number of branches in code changing?

• Is modern hardware design changing the dynamic frequency of
branches?

• Is it getting harder or easier to predict branch outcomes?

• Is the misprediction penalty changing?

Spring 2014 CSE 471 - Dynamic Branch

Prediction

8

Branch Prediction is More Important Today

Conditional branches still comprise about 20% of instructions

Still correct predictions are more important today

• pipelines deeper
branch not resolved until more cycles from fetching
therefore the misprediction penalty greater

• cycle times smaller: more emphasis on throughput
(performance)

• more functionality between fetch & execute

• multiple instruction issue (superscalars & VLIW) & multiple
threads
branch occurs almost every cycle

• flushing & re-fetching more instructions

• object-oriented programming
more indirect branches which harder to predict

• dual of Amdahl’s Law
other forms of pipeline stalling are being addressed so the portion
of CPI due to branch delays is relatively larger

All this means that the potential stalling due to branches is greater

5

Spring 2014 CSE 471 - Dynamic Branch

Prediction

9

Branch Prediction is More Important Today

On the other hand,

• chips are denser so we can consider sophisticated HW solutions

• hardware cost is small compared to the performance gain

Spring 2014 CSE 471 - Dynamic Branch

Prediction

10

Technical Directions in Branch Prediction

1: Improve the prediction

• 2-level, correlating (or adaptive) predictor (Intel Core i7, ARM
Cortex-A8, Intel Pentiums)

• use both history & branch address (Cortex-A8, MIPS)

• tournament predictor (Pentium 4, IBM Power 5)

2: Determine the target earlier

• branch target buffer (everybody)

• next address in I-cache (Sun UltraSPARC)

• return address stack (everybody)

3: Reduce misprediction penalty

• fetch both instruction streams (IBM mainframes)

4: Eliminate branch execution

• predicated execution (Intel Itanium)

6

Spring 2014 CSE 471 - Dynamic Branch

Prediction

11

1: Correlating (Adaptive) Predictor

The rationale:

• having the prediction depend on the outcome of only 1 branch

might produce bad predictions

• some branch outcomes are correlated

 example: same condit ion variable

 if (d==0)

 ...

 if (d!=0)

 example: related condit ion variables

 if (d==0)

 b=1;

 if (b==1)

Spring 2014 CSE 471 - Dynamic Branch

Prediction

12

1: Correlating Predictor

 more complicated example: related condit ion variables

 if (x==2) /* branch 1 */

 x=0;

 if (y==2) /* branch 2 */

 y=0;

 if (x!=y) /* branch 3 */

 do this; else do that;

• if branches 1 & 2 are taken, branch 3 is not taken

 use a history of the past m branches
 represents an execution path through the program
(but still 1 or 2 bits of prediction)

7

Spring 2014 CSE 471 - Dynamic Branch

Prediction

13

1: Correlating Predictor

General idea of correlating branch prediction:

• put the global branch history in a global history register

• global history is a shift register: shift left in the new branch

outcome

• use its value to access a pattern history table (PHT) of 2-bit

saturating counters (the predictions)

Spring 2014 CSE 471 - Dynamic Branch

Prediction

14

1: Correlating Predictor

Many implementation variations

• the number of branch history registers

• 1 history register for all branches (global)

• table of history registers, strive for 1 for each branch path

(private: model only)

• table of history registers, each shared by several branch paths

(shared)

• the history length (number of entries in each history register)

• the number of PHTs

• how access the PHT

• What is the trade-off?

8

Spring 2014 CSE 471 - Dynamic Branch

Prediction

15

1: Tournament Predictor

Combine branch predictors

• local, per-branch prediction, accessed by the low PC bits

• correlated prediction based on the last m branches, assessed by

the global history register

• hardware that tracks which is currently the best predictor for this

branch

• 2-bit counter: increase for one, decrease for the other

Spring 2014 CSE 471 - Dynamic Branch

Prediction

16

2: Branch Target Buffer (BTB)

Cache that stores: the addresses of branches

 the predicted target address

 branch prediction bits (optional)

Accessed by PC address in fetch stage

 if hit: address was for this branch instruction

 fetch the target instruction if a hit (and if prediction bits say taken)

No branch delay if: prediction is taken & is correct

 branch target is found in BTB

 (assume BTB update is done in the next cycles)

9

Spring 2014 CSE 471 - Dynamic Branch

Prediction

17

2: Return Address Stack

The bad news:

• indirect jump targets are hard to predict

• registers for target calculation are accessed several stages after
fetch

The good news: most indirect jumps (85%) are returns from functions

• optimize for this common case

Return address stack

• return address pushed on a call, popped on a return

• provides the return target early

• best for procedures that are called from multiple call sites

• BTB would predict address of the return from the last call

• if “big enough”, can predict returns perfectly

• these days 1-32 entries

Spring 2014 CSE 471 - Dynamic Branch

Prediction

18

Calculating the Cost of Branches

Factors to consider:

• branch frequency (every 4-6 instructions)

• correct prediction rate

• 1 bit: ~ 80% to 85%

• 2 bit: ~ high 80s to low 90%

• correlated branch prediction: ~ 96%

• misprediction penalty

 RISCs: 4 -7 cycles

 Intel Core i7: 15 cycles

 ARM Cortex A8: 13 cycles

• then have to multiply by the instruction width

• or misfetch penalty

have the correct prediction but not know the target address yet

10

Spring 2014 CSE 471 - Dynamic Branch

Prediction

19

Calculating the Cost of Branches

What is the probability that a branch is taken?

Given:

• 20% of branches are unconditional branches

• of conditional branches,

• 66% branch forward & are evenly split between taken & not

taken

• the rest branch backwards & are always taken

Spring 2014 CSE 471 - Dynamic Branch

Prediction

20

Calculating the Cost of Branches

What is the contribution to CPI of conditional branch stalls, given:

• 15% branch frequency

• a BTB for conditional branches only with a

• 10% miss rate

• 3-cycle miss penalty

• branch prediction hardware

• 92% prediction accuracy

• 7 cycle misprediction penalty

• base CPI is 1

 BTB result Prediction Frequency (per instruction) Penalty (cycles) Stalls

miss -- .15 * .10 = .015 3 .045

hit correct .15 * .90 * .92 = .124 0 0

hit incorrect .15 * .90 * .08 = .011 7 .076

Total contribution to CPI .121

11

Spring 2014 CSE 471 - Dynamic Branch

Prediction

21

Dynamic Branch Prediction, the Executive Summary

Stepping back from the designs & looking forward to the future,

how do you figure out whether branch prediction (or any other aspect

of a processor design) is still important to improve?

• Look at technology trends

• What is cheap now that was expensive before?

 (cheap = cost, time, chip area, ease of programming, …)

• How do the trends affect different aspects of prediction performance (or

hardware cost or power consumption, etc.)?

• Given these effects, which factors become bottlenecks?

• What techniques can we devise to eliminate the bottlenecks?

Spring 2014 CSE 471 - Dynamic Branch

Prediction

22

Prediction Research

Predicting branches based on machine-learning algorithms

Predicting load addresses

Predicting variable values

Predicting which cache block will be accessed next

Predicting which thread will hold a lock next

Predicting which thread should execute on a multithreaded processor

Predicting power consumption & when it pays to power-down processor

components

Predicting when a fault might occur

12

Important Issues

Anything in red or green:

• what causes branch hazards

• what is branch prediction

• dynamic vs. static branch prediction

• why branch prediction is important today

• BPB, two-bit, correlating, tournament

• BTB, return address stack

• factors that determine branch performance

• how do you determine what aspect of design is important to
improve

Spring 2014 23 CSE 471 - Dynamic Branch

Prediction

