
1 

Spring 2014 CSE 471 - Dynamic Branch 

Prediction 

1 

Control Hazards 

The nub of the problem: 

• In what pipeline stage does the processor fetch the next 

instruction? 

• If that instruction is a conditional branch, when does the processor 

know whether the conditional branch is taken (execute code at the 

target address) or not taken (execute the sequential code)? 

• What is the difference in cycles between them? 

The cost of stalling until you know which way to branch 

• number of cycles in between these 2 stages * branch frequency = 

the contribution to CPI due to branches 

Predict the branch outcome to avoid stalling 
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Branch Prediction 

 
Branch prediction: 

• Resolve a branch hazard by predicting which path will be taken 

• Proceed under that assumption 

• If the prediction is correct, avoid delay of the branch hazard 

• If the prediction is incorrect, flush the wrong-path instructions from 
the pipeline & fetch the right path 

 

Performance improvement depends on: 

• how often the prediction is correct 
(producing correct predictions is most of the innovation) 

• how soon you can check the prediction 
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Branch Prediction 

 

Dynamic branch prediction: 

• the prediction is determined at runtime & changes as program 
behavior changes 

• branch prediction mechanism implemented in hardware 

• common algorithm based on branch history 

• predict the branch taken if branched the last time 

• predict the branch not-taken if didn’t branch the last time 

 

Alternative: static branch prediction 

• compiler-determined prediction 

• fixed for the life of the program 

• A likely algorithm? 
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Branch Prediction Buffer 

Branch prediction buffer (BPB)  

• small memory indexed by the lower bits of the address of a branch 
instruction during the fetch stage 

• contains a 1-bit prediction 
(which path the last branch to index to this BPB location took) 

• do what the prediction says to do 

• if the prediction is taken & it is correct 

• only incur a one-cycle penalty (in our 5-stage pipeline)- why? 

• if the prediction is not taken & it is correct 

• incur no penalty - why? 

• if the prediction is incorrect 

• change the prediction 

• also flush the pipeline  

• penalty is the same as if there were no branch prediction 
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Two-bit Prediction 

A single prediction bit does not work well with loops 

• mispredicts the first & last iterations of a nested loop 

 

Two-bit branch prediction for loops 

• Algorithm: have to be wrong twice in a row before prediction is changed 
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Two-bit Prediction 
 

 

Works well when branches predominantly go in the same direction 

• A second check is made to make sure that a short & temporary 
change of direction does not change the prediction away from 
the dominant direction 

• Why does it work? 

• What architecture design principle is involved? 
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Is Branch Prediction More Important Today? 

 

 

Think about: 

• Is the number of branches in code changing? 

• Is modern hardware design changing the dynamic frequency of 
branches? 

• Is it getting harder or easier to predict branch outcomes? 

• Is the misprediction penalty changing? 
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Branch Prediction is More Important Today 

Conditional branches still comprise about 20% of instructions 

Still correct predictions are more important today 

• pipelines deeper 
branch not resolved until more cycles from fetching 
therefore the misprediction penalty greater 

• cycle times smaller: more emphasis on throughput 
(performance) 

• more functionality between fetch & execute 

• multiple instruction issue (superscalars & VLIW) & multiple 
threads 
branch occurs almost every cycle 

• flushing & re-fetching more instructions 

• object-oriented programming 
more indirect branches which harder to predict 

• dual of Amdahl’s Law 
other forms of pipeline stalling are being addressed so the portion 
of CPI due to branch delays is relatively larger 

All this means that the potential stalling due to branches is greater 
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Branch Prediction is More Important Today 

On the other hand, 

• chips are denser so we can consider sophisticated HW solutions 

• hardware cost is small compared to the performance gain 
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Technical Directions in Branch Prediction 

1: Improve the prediction 

• 2-level, correlating (or adaptive) predictor (Intel Core i7, ARM 
Cortex-A8, Intel Pentiums) 

• use both history & branch address (Cortex-A8, MIPS) 

• tournament predictor (Pentium 4, IBM Power 5) 

2: Determine the target earlier 

• branch target buffer (everybody) 

• next address in I-cache (Sun UltraSPARC) 

• return address stack (everybody) 

3: Reduce misprediction penalty 

• fetch both instruction streams (IBM mainframes) 

4: Eliminate branch execution 

• predicated execution (Intel Itanium) 
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1: Correlating (Adaptive) Predictor 

The rationale: 

• having the prediction depend on the outcome of only 1 branch 

might produce bad predictions 

• some branch outcomes are correlated 

   example: same condit ion variable  

  if (d==0)  

  ...   

  if (d!=0)   

 example: related condit ion variables 

  if (d==0) 

        b=1; 

  if (b==1) 
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1: Correlating Predictor 

 more complicated example: related condit ion variables 

  if (x==2)   /* branch 1 */ 

     x=0;  

  if (y==2)   /* branch 2 */ 

     y=0;  

  if (x!=y)   /* branch 3 */ 

     do this; else do that; 

 

• if branches 1 & 2 are taken, branch 3 is not taken 

 

  use a history of the past m branches 
 represents an execution path through the program 
(but still 1 or 2 bits of prediction) 
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1: Correlating Predictor 

General idea of correlating branch prediction: 

• put the global branch history in a global history register 

• global history is a shift register: shift left in the new branch 

outcome 

• use its value to access a pattern history table (PHT) of 2-bit 

saturating counters (the predictions) 
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1: Correlating Predictor 

Many implementation variations 

• the number of branch history registers 

• 1 history register for all branches (global) 

• table of history registers, strive for 1 for each branch path 

(private: model only) 

• table of history registers, each shared by several branch paths 

(shared) 

• the history length (number of entries in each history register) 

• the number of PHTs 

• how access the PHT 

• What is the trade-off? 
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1: Tournament Predictor 

Combine branch predictors  

• local, per-branch prediction, accessed by the low PC bits 

• correlated prediction based on the last m branches, assessed by 

the global history register 

• hardware that tracks which is currently the best predictor for this 

branch 

• 2-bit counter: increase for one, decrease for the other 
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2: Branch Target Buffer (BTB) 

 

Cache that stores:   the addresses of branches 

            the predicted target address 

                                branch prediction bits (optional) 

  

Accessed by PC address in fetch stage 

  if hit: address was for this branch instruction 

           fetch the target instruction if a hit (and if prediction bits say taken) 

 

 

 

 

 

 

No branch delay if: prediction is taken & is correct  

                               branch target is found in BTB  

     (assume BTB update is done in the next cycles) 
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2: Return Address Stack 

The bad news: 

• indirect jump targets are hard to predict 

• registers for target calculation are accessed several stages after 
fetch 

The good news: most indirect jumps (85%) are returns from functions  

• optimize for this common case 

 

Return address stack 

• return address pushed on a call, popped on a return 

• provides the return target early 

• best for procedures that are called from multiple call sites 

• BTB would predict address of the return from the last call 

• if “big enough”, can predict returns perfectly 

• these days 1-32 entries 

Spring 2014 CSE 471 - Dynamic Branch 

Prediction 

18 

Calculating the Cost of Branches 

Factors to consider: 

• branch frequency (every 4-6 instructions) 

• correct prediction rate 

• 1 bit: ~ 80% to 85% 

• 2 bit: ~ high 80s to low 90% 

• correlated branch prediction: ~ 96% 

• misprediction penalty 

   RISCs: 4 -7 cycles 

 Intel Core i7: 15 cycles                                                  

 ARM Cortex A8: 13 cycles 

• then have to multiply by the instruction width 

• or misfetch penalty 

have the correct prediction but not know the target address yet 
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Calculating the Cost of Branches 

What is the probability that a branch is taken? 

Given: 

• 20% of branches are unconditional branches 

• of conditional branches, 

• 66% branch forward & are evenly split between taken & not 

taken 

• the rest branch backwards & are always taken 
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Calculating the Cost of Branches 

What is the contribution to CPI of conditional branch stalls, given: 

• 15% branch frequency 

• a BTB for conditional branches only with a 

• 10% miss rate 

• 3-cycle miss penalty 

• branch prediction hardware 

• 92% prediction accuracy 

• 7 cycle misprediction penalty 

• base CPI is 1 

 BTB result  Prediction  Frequency  (per instruction)  Penalty (cycles)  Stalls 

miss -- .15 * .10 = .015 3 .045 

hit correct .15 * .90 * .92 = .124 0 0 

hit incorrect .15 * .90 * .08 = .011 7 .076 

Total contribution to CPI  .121  
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Dynamic Branch Prediction, the Executive Summary 

Stepping back from the designs & looking forward to the future, 

how do you figure out whether branch prediction (or any other aspect 

of a processor design) is still important to improve? 

• Look at technology trends 

• What is cheap now that was expensive before? 

     (cheap = cost, time, chip area, ease of programming, …) 

• How do the trends affect different aspects of prediction performance (or 

hardware cost or power consumption, etc.)? 

• Given these effects, which factors become bottlenecks? 

• What techniques can we devise to eliminate the bottlenecks? 
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Prediction Research 

Predicting branches based on machine-learning algorithms 

Predicting load addresses 

Predicting variable values 

Predicting which cache block will be accessed next 

Predicting which thread will hold a lock next 

Predicting which thread should execute on a multithreaded processor 

Predicting power consumption  & when it pays to power-down processor 

components 

Predicting when a fault might occur 



12 

Important Issues 

Anything in red or green: 

• what causes branch hazards 

• what is branch prediction 

• dynamic vs. static branch prediction 

• why branch prediction is important today 

• BPB, two-bit, correlating, tournament 

• BTB, return address stack 

• factors that determine branch performance 

• how do you determine what aspect of design is important to 
improve 
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