

Nor	n-blocking Caches
in-order processors	
lw \$3, 100(\$4)	in execution, cache miss
add \$2, \$3 , \$4	consumer waits until the miss is satisfie
sub \$5, \$6, \$7	independent instruction waits for the ad-
out-of-order processors	
lw \$3, 100(\$4)	in execution, cache miss
sub \$5, \$6, \$7	independent instruction can execute during the cache miss
add \$2, \$3 , \$4	consumer waits until the miss is satisfie

Sub-block Placement						
Divide a bl	ock into sub-blocks	i				
tag tag tag tag	I data I data V data I data	V data V data V data I data	V data V data V data I data	I data V data V data I data		
 sult valt 2 k 2 k + the + fev - cat 	b-block = unit of tra id bit/sub-block inds of misses: block-level miss: ta sub-block-level mis transfer time of a s ver tags than if each n't exploit spatial loc	ags didn't matc ags didn't matc ss: tags matche sub-block n block was the cality	ne miss n ed, valid bit wa size of a subb	s clear block		
How does	How does sub-block placement improve memory system performance?					
Spring 2014	(CSE 471 - Advanced Techniques	Caching		7	

Tiling Example				
<pre>/* before */ for (i=0; i<n; (j="0;</th" for="" i*=""><th><pre>=i+1) j<n; (k="0;" *="" +="" ,j]="x[i,j]" :="" ;="" <="" i="i+1)" j="j+1)" j(k="kk;" j<min(jj+t-1,n);="" jj="jj+T)" k="k+1)" k<min(kk+t-1,n);="" k<n;="" kk="kk+T)" pre="" r="r" r;="" y[i,k]="" z[k,j];="" {="" {r="r" }=""></n;></pre></th><th>1 2 3 4 5 6 7 8 9</th></n;></pre>	<pre>=i+1) j<n; (k="0;" *="" +="" ,j]="x[i,j]" :="" ;="" <="" i="i+1)" j="j+1)" j(k="kk;" j<min(jj+t-1,n);="" jj="jj+T)" k="k+1)" k<min(kk+t-1,n);="" k<n;="" kk="kk+T)" pre="" r="r" r;="" y[i,k]="" z[k,j];="" {="" {r="r" }=""></n;></pre>	1 2 3 4 5 6 7 8 9		
Spring 2014	CSE 471 - Advanced Caching Techniques	12		

Independer	it memory banks
differallow	ent banks can be accessed at once, with different addresses
multi acce	ple memory controllers & separate address lines, one for each
• 0	lifferent controllers cannot access the same bank
 less 	area than dual porting
Effect on me	emory system performance?

Hardwara ar a	ampilor based profetabing (decreases missee)	
Coupling a writ store ops/h	te-through memory update policy with a write build ideas to be a store latencies)	uffer (eliminates
Merging reque penalty)	sts to the same cache block in a non-blocking c	ache (hide miss
TLB (reduce pa	age fault time (penalty))	
Cache hierarch	nies (reduce miss penalty)	
Virtual caches	(reduce L1 cache access time)	
Wider bus (inc	rease bandwidth)	
ing 2014	CSE 471 - Advanced Caching	17
pring 2014	CSE 471 - Advanced Caching	17

Techniques