
1

Cache Coherency

The issue:

• must guarantee that all processors see correct data despite
multiple readers & writers

• in a nutshell, how to make writes by one processor show up in
other processor caches

Cache coherent processors

• all reading processors must get the most current value

• most current value for an address is the last write (in program
order)

Cache coherency problem

• update from a writing processor is not known to other processors

Spring 2014 1 CSE 471 - Cache Coherence

A Low-end MP

Spring 2014 2 CSE 471 - Cache Coherence

P P

Shd. Cache

Memory

0 2 1 3

2

Cache Coherency

Cache coherency protocols

• (usually) hardware mechanism for maintaining cache coherency

• coherency state associated with a cache block of data

• operations on shared data change the state

• for the processor that initiates an operation

• for other processors that have the data of that operation in their
caches

• two general types

• snooping with a bus

• directory with a multi-path interconnect

• In sum, hardware implementation:

• sharing state of each cache block

• rules for changing this state in response to memory operations

• implemented as a state transition diagram

Spring 2014 3 CSE 471 - Cache Coherence

Write-Invalidate Protocols

• Processor obtains exclusive access for writes (becomes the
“owner”) by invalidating data in other processors’ caches

• When the other processors access the data, they incur a
coherency miss (invalidation miss)

• Owning processor provides the data in a cache-to-cache transfer

• good for:

• multiple writes to same word or block by one processor

• exploits migratory sharing from processor to processor (also
called processor locality)

Spring 2014 4 CSE 471 - Cache Coherence

3

A Low-end MP

Spring 2014 5 CSE 471 - Cache Coherence

0 2 1 3

Cache Coherency Protocol Implementations

Snooping

• used with low-end MPs

• few processors

• centralized memory

• bus-based (broadcast)

• distributed implementation: responsibility for maintaining coherence
lies with each processor cache

Directory-based

• used with higher-end MPs

• more processors

• distributed memory

• multi-path interconnect (point-to-point)

• distributed implementation: responsibility for maintaining coherence
lies with the directory

• directory structure is distributed with the memory

• 1 directory entry for each cache-block-size chunk of memory

Spring 2014 6 CSE 471 - Cache Coherence

4

A High-end MP

Proc

Interconnection network

$ Proc $ Proc $

Proc $ Proc $ Proc $

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Spring 2014 7 CSE 471 - Cache Coherence

Snooping Implementation

A distributed coherency protocol

• coherency state associated with each cache block

• each cache controller (the “snoop”) maintains coherency for its own
cache

• compare address on the bus with address in cache

• response depends on coherency state

Spring 2014

8

CSE 471 - Cache Coherence

CPU

D
$

 d
at

a

D
$

 t
ag

s

CC

bus

5

Snooping Implementation

How the bus is used

• broadcast medium

• entire coherency operation is atomic wrt other processors

• keep-the-bus protocol:

• master holds the bus until the entire operation has
completed

• no processor can initiate another operation while any
operation is in progress

• come to a legal, stable global coherence state before any
new operations

• split-transaction protocol :

• request & response are different phases of an operation

• Improves bus throughput at the cost of operation
latency

• state values that indicate that an operation is in progress

• no processor can initiate another operation for a cache
block that has an operation already in progress

Spring 2014 9 CSE 471 - Cache Coherence

Snooping Implementation

Snoop implementation:

• snoop on the highest level cache

• another reason L2 is physically-accessed

• property of inclusion:

• all blocks in L1 must be in L2

• therefore only have to snoop on L2

• may need to update L1 state if change L2 state

• separate tags & state for snoop lookups

• processor & snoop communicate for a state or tag change

Spring 2014 10 CSE 471 - Cache Coherence

6

An Example Snooping Protocol

Each cache block is in one of three states

• shared:

• clean in all caches & up-to-date in memory

• block can be repeatedly read by any processor

• exclusive:

• dirty in exactly one cache, the owner of the block

• only that processor can read/write to it

• invalid:

• block contains no valid data

Spring 2014 11 CSE 471 - Cache Coherence

State Transitions for a Given Cache Block

State transitions caused by:

• the requesting processor, e.g.,

• read/load miss (go from invalid to shared)

• write/store miss (go from invalid to exclusive)

• write/store to a shared block (go from shared to exclusive)

• snoops of other caches, e.g.,

• read/load miss by P1 makes P2’s owned block change from

exclusive to shared

• write/store miss by P1 makes P2’s owned block change

from exclusive to invalid

Spring 2014 12 CSE 471 - Cache Coherence

7

State Machine (CPU side)

Invalid
Shared

(read/only)

Exclusive

(read/write)

CPU load miss

CPU store miss

CPU load hit

Bus read

Bus write

CPU load miss

Bus read

Write-back cache block

CPU store

Bus write

CPU load miss

Bus read

CPU store miss

Write-back cache block

Bus write

CPU load hit

CPU store hit
Spring 2014 13 CSE 471 - Cache Coherence

State Machine (Bus side: the snoop)

Invalid
Shared

(read/only)

Exclusive

(read/write)

Bus write for this block

Write-back the block
Bus read for this block

Write-back the block

Bus write

for this block

Spring 2014 14 CSE 471 - Cache Coherence

8

Scalable Cache Coherence

Simple, but is it scalable?

• one operation at a time

• snooping requires broadcasting all operations

• fine for 2 or 4 processors

Alternatives:

• multiple operations at a time

• point-to-point communication (most snooping results in no action)

• hundreds of processors

Spring 2014 15 CSE 471 - Cache Coherence

Directory Implementation

Distributed memory machine

• processor-memory pairs are connected via a multi-path
interconnection network

• point-to-point communication

• snooping with broadcasting is wasteful of the parallel
communication capability

• each processor (or cluster of processors) has its own portion of
physical memory

• a processor has fast access to its local memory & slower access to
“remote” memory located at other processors

• NUMA (non-uniform memory access) machines

Spring 2014 16 CSE 471 - Cache Coherence

9

A High-end MP

Proc

Interconnection network

$ Proc $ Proc $

Proc $ Proc $ Proc $

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Spring 2014 17 CSE 471 - Cache Coherence

Directory Implementation

Coherency state is associated with units of memory that are the size of
cache blocks: directory state

• each directory tracks the coherence state of the units in its memory
& updates it

• uncached (invalid in snooping):

• no processor has the data cached & memory is up-to-date

• shared:

• at least 1 processor has the data cached & memory is up-
to-date

• block can be read by any processor

• exclusive:

• only 1 processor (the owner) has the data cached &
memory is stale

• only that processor can write to it

• directory tracks which processors share its memory blocks

• vector of presence bits (1/processor) to indicate which
processor(s) has cached the data

• dirty bit to indicate if exclusive

Spring 2014 18 CSE 471 - Cache Coherence

10

Directory Implementation

Different nodes have different uses when maintaining coherency

• local node: where the memory request initiated

• home node: where the memory location of an address resides (and
cached data may be there too)

• remote node: an alternate location for the data, if a processor has
previously requested, cached & updated it

In satisfying a memory request:

• local node is the initiator; home node is identified by the data
memory address; a directory knows who the remote node is

• messages sent between the different nodes in point-to-point
communication

• messages get explicit replies

Some simplifying assumptions for using the protocol

• processor blocks until the access is complete

• messages are processed in the order received

 Spring 2014 19 CSE 471 - Cache Coherence

Read Miss for an Uncached Block

P2

Mem
Mem

Mem

Interconnection network

$ P3 $

P0 $ P1 $

1: read miss

2: data value reply
 Mem

 Dir

 Mem

 Dir

Spring 2014 20 CSE 471 - Cache Coherence

 Dir

 Dir

11

Read Miss for an Exclusive, Remote Block

P2

Interconnection network

$ P3 $

P0 $ P1 $

1: read miss

4: data value reply

2: fetch Mem

 Dir

 Mem

 Dir

 Mem

 Dir

3: data write-back

Spring 2014 21 CSE 471 - Cache Coherence

Mem

 Dir

Write Miss for an Exclusive, Remote Block

P2

Mem

Interconnection network

$ P3 $

P0 $ P1 $

1: write miss

4: data value reply
3: data write-back

2: fetch & invalidate Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Spring 2014 22 CSE 471 - Cache Coherence

Mem

 Dir

12

Directory Protocol Messages

Message type Source Destination Message Content

Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A

– Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.

Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory

Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; invalidate the block in
the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory (read or write miss response)

Data write-back Remote cache Home directory A, Data

– Write-back a data value for address A (invalidate response)

 Spring 2014 23 CSE 471 - Cache Coherence

Evaluating the Performance of Directory Schemes

Greater bandwidth capability

• multiple paths

• not contacting processors not involved in the memory operation

Longer operation latency

• extra hops

• ack’ing

Spring 2014 24 CSE 471 - Cache Coherence

13

Directory FSM for a Memory Block

Tracks all copies of a memory block

Makes two state changes:

• update coherency state (same as for snooping protocol)

• alter the number of sharers in the sharing set

Spring 2014 25 CSE 471 - Cache Coherence

Directory FSM for a Memory Block (Home)

(Data write-back)

Sharers = {}

Uncached
Shared

(read only)

Read miss

Send data reply

Sharers = {P}, W = 0

Write miss

Send invalidate to all

sharers

Sharers = {P}, W = 1

Write miss

Send data reply

Sharers = {P}, W = 1

Read miss

Send data reply

Sharers += {P}, W = 0

Spring 2014 26 CSE 471 - Cache Coherence

Purple (loads) & green (stores) =

directives from local node

Black = home node ops

Write miss

Send fetch/invalidate to

owner

(Data write-back)

Send data reply

Sharers = {P}, W = 1

Read miss

Send data fetch to owner

(Data write-back)

Send data reply

Sharers += {P}, W = 0

Exclusive

(read/write)

14

CPU FSM for a Cache Block

Same coherency states as for the directory FSM

Transactions very similar to snooping implementations, except that they

are point-to-point

• read & write misses sent to home directory

• invalidate & data fetch requests to the node with the data replace

broadcasted read/write misses

Spring 2014 27 CSE 471 - Cache Coherence

FSM for a Cache Block

Fetch/Invalidate

Invalidate
Invalid

Shared

(read/only)

Exclusive

(read/write)

CPU read miss

CPU read hit

CPU write

miss

CPU write hit or miss

CPU write hit

CPU read miss

CPU write miss

CPU read hit

Fetch

Blue = directives from

the home directory

Spring 2014 28 CSE 471 - Cache Coherence

Purple & green = directives

from the local node

Read miss

15

False Sharing

Processors read & write to different words in a shared cache block

• cache coherency is maintained on a cache block basis

• processes share cache blocks, not data

• block ownership bounces between processor caches

Spring 2014 29 CSE 471 - Cache Coherence

A Low-end MP

Spring 2014 30 CSE 471 - Cache Coherence

0 2 1 3

16

False Sharing

Impact aggravated by:

• larger block size: why?

• larger cache size: why?

• large miss penalties: why?

Reduced by:

• coherency protocols (coherency state per subblock)

• let cache blocks become incoherent as long as there is only
false sharing

• make them coherent if any processor true shares

• compiler optimizations (group & transpose, cache block padding)

• cache-conscious programming wrt initial data structure layout

Spring 2014 31 CSE 471 - Cache Coherence

Important Issues

Cache coherency:

• its definition

• the hardware support

• write-invalidate protocols

• how bus-based protocols work

• how directories work

• how coherency protocols match or take advantage of the MP
design

Adding to our knowledge:

• a 4th type of miss (coherency misses)

• a 3rd locality (processor)

• a 2nd application of snooping (bus-based coherency protocol)

• a 2nd use of sub-block placement (eliminate costs of false sharing)

• a 3rd latency vs. throughput trade-off

Spring 2014 32 CSE 471 - Cache Coherence

17

Important Issues

Anything in red or green:

• 2 bus protocols

• inclusion property

• UMA vs. NUMA

• role of local, home, remote nodes

• bus vs. multipath

• snooping vs. directory

• snooping in a coherency protocol vs. snooping in Tomasulo’s
algorithm

• false sharing: why it occurs, what makes it worse, how to fix it

Spring 2014 33 CSE 471 - Cache Coherence

Apply What You Know

A 4th coherency state:

• what triggers state transitions

• what are the state changes, given a sequence of memory
operations

A protocol that isn’t based on invalidations:

• what triggers state transitions

• what are the state changes, given a sequence of memory
operations

Spring 2014 34 CSE 471 - Cache Coherence

18

Apply What You Know

Example:

Spring 2014 35 CSE 471 - Cache Coherence

Assume you have a 4-state, write-invalidate protocol, in which three of the states

are those used in the baseline 3-state protocol we studied in class and the fourth

state is a new one, called private clean. A private clean state means that there is

only one cached copy of the data, and that it is a read-only copy (i.e., it has the

same value as its backup in memory). Using this new 4-state coherency protocol,

fill in the state values for a single cache block in each of the processors (P0, P1,

P2), for each of the memory operations listed in the first column. Assume the

multiprocessor is bus-based.

Operations P0 P1 P2

Initially invalid invalid invalid

P1: loads B

P2: loads B

P0: stores B

P1: loads B

P1: stores B

