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Cache Coherency 

The issue: 

• must guarantee that all processors see correct data despite 
multiple readers & writers 

• in a nutshell, how to make writes by one processor show up in 
other processor caches 

 

Cache coherent processors 

• all reading processors must get the most current value 

• most current value for an address is the last write (in program 
order)  

 

Cache coherency problem 

• update from a writing processor is not known to other processors 
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Cache Coherency 

Cache coherency protocols 

• (usually) hardware mechanism for maintaining cache coherency  

• coherency state associated with a cache block of data 

• operations on shared data change the state 

• for the processor that initiates an operation 

• for other processors that have the data of that operation in their 
caches 

• two general types 

• snooping with a bus 

• directory with a multi-path interconnect 

 

• In sum, hardware implementation: 

• sharing state of each cache block 

• rules for changing this state in response to memory operations 

• implemented as a state transition diagram 

 

Spring 2014 3 CSE 471 - Cache Coherence 

Write-Invalidate Protocols 

 

• Processor obtains exclusive access for writes (becomes the 
“owner”) by invalidating data in other processors’ caches 

• When the other processors access the data, they incur a 
coherency miss (invalidation miss) 

• Owning processor provides the data in a cache-to-cache transfer 

• good for: 

• multiple writes to same word or block by one processor 

• exploits migratory sharing from processor to processor (also 
called processor locality) 
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A Low-end MP 
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Cache Coherency Protocol Implementations 

Snooping  

• used with low-end MPs 

• few processors  

• centralized memory 

• bus-based (broadcast) 

• distributed implementation: responsibility for maintaining coherence 
lies with each processor cache 

 

Directory-based 

• used with higher-end MPs 

• more processors  

• distributed memory 

• multi-path interconnect (point-to-point) 

• distributed implementation: responsibility for maintaining coherence 
lies with the directory 

• directory structure is distributed with the memory 

• 1 directory entry for each cache-block-size chunk of memory 

Spring 2014 6 CSE 471 - Cache Coherence 



4 

A High-end MP 
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Snooping Implementation 

 

 

A distributed coherency protocol 

• coherency state associated with each cache block 

• each cache controller (the “snoop”) maintains coherency for its own 
cache 

• compare address on the bus with address in cache 

• response depends on coherency state 
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Snooping Implementation 

How the bus is used 

• broadcast medium 

• entire coherency operation is atomic wrt other processors 

• keep-the-bus protocol:  

• master holds the bus until the entire operation has 
completed 

• no processor can initiate another operation while any 
operation is in progress 

• come to a legal, stable global coherence state before any 
new operations 

• split-transaction protocol :  

• request & response are different phases of an operation 

• Improves bus throughput at the cost of operation 
latency 

• state values that indicate that an operation is in progress 

• no processor can initiate another operation for a cache 
block that has an operation already in progress 
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Snooping Implementation 

Snoop implementation: 

• snoop on the highest level cache 

• another reason L2 is physically-accessed 

• property of inclusion:  

• all blocks in L1 must be in L2 

• therefore only have to snoop on L2 

• may need to update L1 state if change L2 state 

• separate tags & state for snoop lookups 

• processor & snoop communicate for a state or tag change 
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An Example Snooping Protocol 

Each cache block is in one of three states 

• shared: 

• clean in all caches & up-to-date in memory 

• block can be repeatedly read by any processor 

• exclusive:  

• dirty in exactly one cache, the owner of the block 

• only that processor can read/write to it 

• invalid:  

• block contains no valid data 
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State Transitions for a Given Cache Block 

State transitions caused by: 

• the requesting processor, e.g., 

•  read/load miss (go from invalid to shared) 

•  write/store miss (go from invalid to exclusive) 

•  write/store to a shared block (go from shared to exclusive) 

• snoops of other caches, e.g., 

•  read/load miss by P1 makes P2’s owned block change from 

exclusive to shared 

•  write/store miss by P1 makes P2’s owned block change 

from exclusive to invalid 
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State Machine (CPU side) 
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State Machine (Bus side: the snoop) 
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Scalable Cache Coherence 

 

Simple, but is it scalable? 

• one operation at a time 

• snooping requires broadcasting all operations 

• fine for 2 or 4 processors 

 

Alternatives: 

• multiple operations at a time 

• point-to-point communication (most snooping results in no action) 

• hundreds of processors 
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Directory Implementation 

 

Distributed memory machine 

• processor-memory pairs are connected via a multi-path 
interconnection network 

• point-to-point communication 

• snooping with broadcasting is wasteful of the parallel 
communication capability 

• each processor (or cluster of processors) has its own portion of 
physical memory 

• a processor has fast access to its local memory & slower access to 
“remote” memory located at other processors 

• NUMA (non-uniform memory access) machines 
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A High-end MP 
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Directory Implementation 

Coherency state is associated with units of memory that are the size of 
cache blocks: directory state 

• each directory tracks the coherence state of the units in its memory 
& updates it 

• uncached (invalid in snooping):  

• no processor has the data cached & memory is up-to-date 

• shared: 

• at least 1 processor has the data cached & memory is up-
to-date 

• block can be read by any processor 

• exclusive:  

• only 1 processor (the owner) has the data cached & 
memory is stale 

• only that processor can write to it 

• directory tracks which processors share its memory blocks 

• vector of presence bits (1/processor) to indicate which 
processor(s) has cached the data 

• dirty bit to indicate if exclusive 
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Directory Implementation 

Different nodes have different uses when maintaining coherency 

• local node: where the memory request initiated 

• home node: where the memory location of an address resides (and 
cached data may be there too) 

• remote node: an alternate location for the data, if a processor has 
previously requested, cached & updated it 

 

In satisfying a memory request: 

• local node is the initiator; home node is identified by the data 
memory address; a directory knows who the remote node is 

• messages sent between the different nodes in point-to-point 
communication 

• messages get explicit replies 

 

Some simplifying assumptions for using the protocol 

• processor blocks until the access is complete 

• messages are processed in the order received 
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Read Miss for an Exclusive, Remote Block 
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Write Miss for an Exclusive, Remote Block 
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Directory Protocol Messages 

Message type Source Destination Message Content
  

Read miss Local cache Home directory  P, A 

– Processor P reads data at address A;  
make P a read sharer and arrange to send data back  

Write miss  Local cache   Home directory   P, A 

– Processor P writes data at address A;  
make P the exclusive owner and arrange to send data back  

Invalidate Home directory   Remote caches  A 

– Invalidate a shared copy at address A. 

Fetch  Home directory   Remote cache   A 

– Fetch the block at address A and send it to its home directory 

Fetch/Invalidate  Home directory   Remote cache   A 

– Fetch the block at address A and send it to its home directory; invalidate the block in 
the cache 

Data value reply  Home directory   Local cache   Data 

– Return a data value from the home memory (read or write miss response) 

Data write-back Remote cache   Home directory   A, Data 

– Write-back a data value for address A (invalidate response) 
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Evaluating the Performance of Directory Schemes 

Greater bandwidth capability 

• multiple paths 

• not contacting processors not involved in the memory operation 

Longer operation latency 

• extra hops 

• ack’ing 
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Directory FSM for a Memory Block 

Tracks all copies of a memory block 

Makes two state changes: 

• update coherency state (same as for snooping protocol) 

• alter the number of sharers in the sharing set 
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CPU FSM for a Cache Block 

Same coherency states as for the directory FSM 

Transactions very similar to snooping implementations, except that they 

are point-to-point 

• read & write misses sent to home directory 

• invalidate & data fetch requests to the node with the data replace 

broadcasted read/write misses 
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False Sharing 

 
Processors read & write to different words in a shared cache block 

• cache coherency is maintained on a cache block basis 

• processes share cache blocks, not data  

• block ownership bounces between processor caches 
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A Low-end MP 
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False Sharing 

Impact aggravated by: 

• larger block size: why? 

• larger cache size: why? 

• large miss penalties: why? 

 

Reduced by: 

• coherency protocols (coherency state per subblock) 

• let cache blocks become incoherent as long as there is only 
false sharing 

• make them coherent if any processor true shares 

• compiler optimizations (group & transpose, cache block padding) 

• cache-conscious programming wrt initial data structure layout 
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Important Issues 

Cache coherency: 

• its definition 

• the hardware support 

• write-invalidate protocols 

• how bus-based protocols work 

• how directories work 

• how coherency protocols match or take advantage of the MP 
design 

 

Adding to our knowledge: 

• a 4th type of miss (coherency misses) 

• a 3rd locality (processor) 

• a 2nd application of snooping (bus-based coherency protocol) 

• a 2nd use of sub-block placement (eliminate costs of false sharing) 

• a 3rd latency vs. throughput trade-off 
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Important Issues 

Anything in red or green: 

• 2 bus protocols 

• inclusion property 

• UMA vs. NUMA 

• role of local, home, remote nodes 

• bus vs. multipath 

• snooping vs. directory 

• snooping in a coherency protocol vs. snooping in Tomasulo’s 
algorithm 

• false sharing: why it occurs, what makes it worse, how to fix it 
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Apply What You Know 

A 4th coherency state: 

• what triggers state transitions 

• what are the state changes, given a sequence of memory 
operations 

 

A protocol that isn’t based on invalidations: 

• what triggers state transitions 

• what are the state changes, given a sequence of memory 
operations 
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Apply What You Know 

Example: 
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Assume you have a 4-state, write-invalidate protocol, in which three of the states 

are those used in the baseline 3-state protocol we studied in class and the fourth 

state is a new one, called private clean.  A private clean state means that there is 

only one cached copy of the data,  and that it is a read-only copy (i.e., it has the 

same value as its backup in memory).   Using this new 4-state coherency protocol, 

fill  in the state values for a single cache block in each of the processors (P0, P1, 

P2), for each of the memory operations listed in the first column. Assume the 

multiprocessor is bus-based. 

Operations P0 P1 P2 

Initially invalid invalid invalid 

P1: loads B       

P2: loads B       

P0: stores B       

P1: loads B       

P1: stores B       


