

Cache Coherency

Cache coherency protocols

- (usually) hardware mechanism for maintaining cache coherency
- · coherency state associated with a cache block of data
- operations on shared data change the state
 - for the processor that initiates an operation
 - for other processors that have the data of that operation in their caches
- two general types
 - snooping with a bus
 - · directory with a multi-path interconnect
- · In sum, hardware implementation:
 - · sharing state of each cache block
 - rules for changing this state in response to memory operations
 - implemented as a state transition diagram

Spring 2014

CSE 471 - Cache Coherence

3

Directory Implementation				
Coherency sta cache bloc	te is associated with units of memory that are the siz ks: directory state	e of		
 each d & upda 	 each directory tracks the coherence state of the units in its memory & updates it 			
• un	cached (invalid in snooping):			
•	no processor has the data cached & memory is up-	-to-date		
• sha	shared:			
•	at least 1 processor has the data cached & memory to-date	y is up-		
•	block can be read by any processor			
• ex(clusive:			
•	only 1 processor (the owner) has the data cached & memory is stale	Š.		
•	only that processor can write to it			
 directory tracks which processors share its memory blocks 				
 vector of presence bits (1/processor) to indicate which processor(s) has cached the data 				
 dirty bit to indicate if exclusive 				
Spring 2014	CSE 471 - Cache Coherence	18		

	Directory P	rotocol Message	<u>s</u>
Message type	Source	Destination	Message Content
Read miss	Local cache	Home directory	Р, А
– Processor I make P a re	P reads data at address ead sharer and arrange	A; to send data back	
Write miss	Local cache	Home directory	Р, А
– Processor I make P the	P writes data at address exclusive owner and ar	s A; rrange to send data back	
Invalidate	Home directory	Remote caches	А
– Invalidate d	a shared copy at addres	s A.	
Fetch	Home directory	Remote cache	А
– Fetch the b	lock at address A and s	end it to its home director	y
Fetch/Invalidate	Home directory	Remote cache	А
 Fetch the b the cache 	lock at address A and s	end it to its home director	y; invalidate the block i
Data value reply	Home directory	Local cache	Data
– Return a da	ita value from the home	e memory (read or write m	iss response)
Data write-back	Remote cache	Home directory	A, Data
– Write-back	a data value for addres	ss A (invalidate response)	
Spring 2014	CSE 47	1 - Cache Coherence	23

Dire	ctory FSM for a Memory Block	2
Tracks all copies of Makes two state ch • update cohe • alter the nu	f a memory block nanges: erency state (same as for snooping protoco mber of sharers in the sharing set	9I)
Spring 2014	CSE 471 - Cache Coherence	25

Important Issues		
Cache cohere its def the ha write-i ho ho	ncy: nition rdware support nvalidate protocols w bus-based protocols work w directories work	
Adding to our	knowledge:	
 a 4th t a 3rd l 	pe of miss (coherency misses) cality (processor)	
 a 2nd a a 2nd a a 3rd b 	pplication of snooping (bus-based coherency p se of sub-block placement (eliminate costs of t tency vs. throughput trade-off	orotocol) false sharing)
Spring 2014	CSE 471 - Cache Coherence	32

	Apply What You Know	
A 4 th coherency sta • what trigger • what are the operations A protocol that isn't • what trigger • what are the operations	te: s state transitions e state changes, given a sequence of memo based on invalidations: s state transitions e state changes, given a sequence of memo	ry ry
Spring 2014	CSE 471 - Cache Coherence	34

Apply What You Know

Example:

Assume you have a 4-state, write-invalidate protocol, in which three of the states are those used in the baseline 3-state protocol we studied in class and the fourth state is a new one, called *private clean*. A private clean state means that there is only one cached copy of the data, and that it is a read-only copy (i.e., it has the same value as its backup in memory). Using this new 4-state coherency protocol, fill in the state values for a single cache block in each of the processors (P0, P1, P2), for each of the memory operations listed in the first column. Assume the multiprocessor is bus-based.

Operations	P0	P1	P2
Initially	invalid	invalid	invalid
P1: loads B			
P2: loads B			
P0: stores B			
P1: loads B			
P1: stores B			

Spring 2014

CSE 471 - Cache Coherence

35