Why Multiprocessors?

Moore's Law predicted a doubling of processor performance every couple of years

true until about 2000

Limits on the performance of a single processor: what are they?

Spring 2014

CSE 471 - Multiprocessors

- 1

Why Multiprocessors

Utilizes coarser granularities than ILP Lots of workload opportunity

- Scientific computing/supercomputing
 - Examples: weather simulation, aerodynamics, protein folding
 - · Each processor computes for a part of the grid
- Server workloads
 - · Example: airline reservation database
 - · Many concurrent updates, searches, lookups, queries
 - · Processors handle different requests
- · Media workloads
 - · Processors compress/decompress different parts of image/frames
- Desktop workloads ...
- · Gaming workloads ...

Multiple processors on a chip; therefore each one has to be simpler

What would you do with a billion transistors on a chip? Or more?

Spring 2014

CSE 471 - Multiprocessors

2

What is a Parallel Architecture?

A parallel computer is a collection of processing elements that cooperate to solve large problems fast.

Some broad issues:

- Resource Allocation:
 - How many processing elements (PEs)?
 - · How powerful are the PEs?
 - · How much memory?
- · Data access, Communication and Synchronization
 - How do the PEs cooperate and communicate?
 - · How are data transmitted between PEs?
 - · What are the abstractions and primitives for cooperation?
- Performance and Scalability
 - · How does a design translate into performance?
 - · How does it scale?

<u>Multiprocessors</u>

Low-end

- · bus-based
 - · simple, but a bottleneck
 - · broadcast cache coherency protocol
- · physically centralized memory
- uniform memory access (UMA machine)
- today's small CMPs: Intel Core i3, i5, i7 (2-6 cores), AMD Opteron "Bulldozer" (4-16 cores), Sun SPARC T4 (8 cores per processor, 4 processors per system), ARM Cortex A5 (2 cores), Nvidia Tegra 3 (4 cores)

Spring 2014

CSE 471 - Multiprocessors

4

Multiprocessors

High-end

- · multiple-path interconnect
 - · higher bandwidth
 - · longer memory latencies
 - · more scalable
 - point-to-point cache coherency protocol
- · physically distributed memory
- non-uniform memory access (NUMA machine)
- · could have processor clusters
- today's large MPs: SGI UV (256 10-core Xeon processors, 2D torus), Cray XE6 (1M Opteron 6200 cores), IBM BlueGene/Q (100K 16-core PowerPCs, 5D torus), Fujitsu K Computer (44K 16-core SPARCs)

Spring 2014

CSE 471 - Multiprocessors

6

