Why Multiprocessors?

Moore's Law predicted a doubling of processor performance every couple of years

- true until about 2000

Limits on the performance of a single processor: what are they?

Why Multiprocessors

Utilizes coarser granularities than ILP
Lots of workload opportunity

- Scientific computing/supercomputing
- Examples: weather simulation, aerodynamics, protein folding
- Each processor computes for a part of the grid
- Server workloads
- Example: airline reservation database
- Many concurrent updates, searches, lookups, queries
- Processors handle different requests
- Media workloads
- Processors compress/decompress different parts of image/frames
- Desktop workloads ...
- Gaming workloads ...

Multiple processors on a chip; therefore each one has to be simpler

What would you do with a billion transistors on a chip? Or more?

What is a Parallel Architecture?

A parallel computer is a collection of processing elements that cooperate to solve large problems fast.

Some broad issues:

- Resource Allocation:
- How many processing elements (PEs)?
- How powerful are the PEs?
- How much memory?
- Data access, Communication and Synchronization
- How do the PEs cooperate and communicate?
- How are data transmitted between PEs?
- What are the abstractions and primitives for cooperation?
- Performance and Scalability
- How does a design translate into performance?
- How does it scale?

Multiprocessors

Low-end

- bus-based
- simple, but a bottleneck
- broadcast cache coherency protocol
- physically centralized memory
- uniform memory access (UMA machine)
- today's small CMPs: Intel Core i3, i5, i7 (2-6 cores), AMD Opteron "Bulldozer" (4-16 cores), Sun SPARC T4 (8 cores per processor, 4 processors per system), ARM Cortex A5 (2 cores), Nvidia Tegra 3 (4 cores)

Low-end MP

Multiprocessors

High-end

- multiple-path interconnect
- higher bandwidth
- longer memory latencies
- more scalable
- point-to-point cache coherency protocol
- physically distributed memory
- non-uniform memory access (NUMA machine)
- could have processor clusters
- today's large MPs: SGI UV (256 10-core Xeon processors, 2D torus), Cray XE6 (1M Opteron 6200 cores), IBM BlueGene/Q (100K 16-core PowerPCs, 5D torus), Fujitsu K Computer (44K 16-core SPARCs)

High-end MP

