
5/20/2014

1

WaveScalar: the Executive Summary

A modern dataflow computer

• solves the language compatibility & memory ordering issues

• solves the scalability issue

The executive summary:

• good at exploiting ILP (dataflow parallelism)

• also traditional coarser-grain parallelism

• cheap thread management

• low operand latency because of a hierarchical PE-interconnect
organization

• memory ordering enforced through wave-ordered memory

• can execute imperative language programs

• no special dataflow languages

Spring 2014 1 CSE 471 - WaveScalar

WaveScalar

Motivation stems from shrinking feature sizes:

• increasing disparity between computation (fast transistors) &

communication (long wires)

• increasing circuit complexity

• decreasing fabrication reliability

Spring 2014 2 CSE 471 - WaveScalar

5/20/2014

2

Monolithic von Nuemann Processors

A success a few years ago.

But in 2016?

 Performance

 Centralized processing & control

 Long wires

 e.g., operand broadcast networks

 Complexity

 40-75% of “design” time is design

 verification

 Defect tolerance

 1 flaw -> tie pin, earrings, …

Spring 2014 3 CSE 471 - WaveScalar

WaveScalar’s Microarchitecture

Good performance via distributed microarchitecture

• hundreds of PEs

• organized hierarchically for fast communication between
neighboring PEs

• short point-to-point (producer to consumer) operand communication

• dataflow execution – no centralized control via a PC

• consequently scalable

Low design complexity through simple, identical PEs

• design one & stamp out hundreds

Defect tolerance

• route around a bad PE

Spring 2014 4 CSE 471 - WaveScalar

5/20/2014

3

Processing Element

• Simple, small (.5M transistors)

• 5-stage pipeline (receive input

operands, match tags, instruction

issue, execute, send output)

• Holds 64 (decoded) instructions

• 128-entry token store

• 4-entry output buffer

Spring 2014 5 CSE 471 - WaveScalar

PEs in a Pod

• Share operand bypass network

• Back-to-back producer-consumer

execution across 2 PEs

Spring 2014 6 CSE 471 - WaveScalar

5/20/2014

4

Domain

Spring 2014 7 CSE 471 - WaveScalar

Cluster

Spring 2014 8 CSE 471 - WaveScalar

5/20/2014

5

WaveScalar Processor

Long distance

communication

• grid-based network

• 2-cycle hop/cluster

• dynamic routing

Spring 2014 9 CSE 471 - WaveScalar

Whole Chip

• Can hold 32K instructions

• Normal memory hierarchy

• Traditional directory-based
cache coherence

• ~400 mm2 in 90 nm
technology

• 1GHz.

• ~85 watts

Spring 2014 10 CSE 471 - WaveScalar

5/20/2014

6

WaveScalar’s Microarchitecture

Good performance via distributed microarchitecture

• hundreds of PEs

• organized hierarchically for fast communication between
neighboring PEs

• short point-to-point (producer to consumer) operand communication

• dataflow execution – no centralized control via a PC

• consequently scalable

Low design complexity through simple, identical PEs

• design one & stamp out hundreds

Defect tolerance

• route around a bad PE

Spring 2014 11 CSE 471 - WaveScalar

pod

PE1 PE2

operand latency vs.

parallelism (resource conflicts)

WaveScalar Instruction Placement

Spring 2014 12 CSE 471 - WaveScalar

5/20/2014

7

Revisit Example to Illustrate

the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2014 13 CSE 471 - WaveScalar

Revisit Example to Illustrate

the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2014 14 CSE 471 - WaveScalar

5/20/2014

8

Revisit Example to Illustrate

the Memory Ordering Problem

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Spring 2014 15 CSE 471 - WaveScalar

Wave-ordered Memory

• Compiler annotates memory
operations

• Execute memory requests

 in any order

• Store buffer hardware
reconstructs the correct order

Load

Store

Load

Store
Load

Store

3

4

8

5

6
7

 Sequence #

4

?

9

6

8
8

 Successor

2

3

?

4

5
4 Predecessor

?

Spring 2014 16 CSE 471 - WaveScalar

5/20/2014

9

Store buffer Wave-ordering Example

Load

Store

Load

Store
Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3

3 4 2

Spring 2014 17 CSE 471 - WaveScalar

Store buffer Wave-ordering Example

4 ? 3

Load

Store

Load

Store
Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3

3 4 2

Spring 2014 18 CSE 471 - WaveScalar

5/20/2014

10

Store buffer Wave-ordering Example

4 ? 3

8 9 ?

Load

Store

Load

Store
Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3

3 4 2

Spring 2014 19 CSE 471 - WaveScalar

Store buffer Wave-ordering Example

4 ? 3

7 8 4

8 9 ?

Load

Store

Load

Store
Load

Store

5

6

6

8

3 4 2

8 9 ?

4

5
7 8 4

4 ? 3

3 4 2

Spring 2014 20 CSE 471 - WaveScalar

5/20/2014

11

Wave-ordered Memory across Waves

Waves are loop-free sections of the
dataflow graph

Each dynamic wave has a wave number

Wave number is incremented between
waves

Ordering memory in a whole program:

• wave-numbers

• sequence numbers within a wave

• can execute imperative language
programs

Spring 2014 21 CSE 471 - WaveScalar

WaveScalar Tag-matching

WaveScalar tag

• thread identifier

• wave number

Token: tag & value

<ThreadID:Wave#>.value

+

<2:5>.3 <2:5>.6

<2:5>.9

Spring 2014 22 CSE 471 - WaveScalar

5/20/2014

12

Multithreading the WaveCache

Architectural-support for WaveScalar threads

• instructions to start & stop memory orderings, i.e., threads

• memory-free synchronization to allow exclusive access to data

• “barrier” or “fence” instruction to force all previous memory

operations to fully execute (to allow other threads to see the results

of this one’s memory operations)

Spring 2014 23 CSE 471 - WaveScalar

Creating & Terminating a Thread

Spring 2014 24 CSE 471 - WaveScalar

5/20/2014

13

Multithreading the WaveCache

Combine to build threads with multiple granularities

• coarse-grain threads: 25-168X over a single thread; 2-16X over

CMP, 5-11X over SMT

• fine-grain, dataflow-style threads: 18-242X over single thread

• a demonstration that one can combine the two in the same
application (equake): 1.6X or 7.9X -> 9X

Spring 2014 25 CSE 471 - WaveScalar

Spring 2014 CSE 471 - WaveScalar 26

Important Issues

Original dataflow machines

• comparison to von Neumann architectures

• dataflow firing rule

• token

• handling branches

• problems

Modern dataflow machines, aka Wavescalar

• comparison to von Neumann microarchitecture

• how solve past dataflow problems

• hierarchical structure

• wave-ordered memory

• thread management

