
CSE471 Homework Assignment #1: Branch Prediction

Due Thursday, April 16th before lecture

1 Introduction

The purpose of this assignment is to supplement your conceptual knowledge of the design of different dynamic
branch prediction schemes with concrete experience in implementing them and to test your intuition about
their relative performance with data that reflects the actual performance of your implementations. As you
learned in class, branch prediction is a common architectural technique for avoiding pipeline delays due to
branches. A processor does branch prediction as it fetches a branch instruction. In order to continue fetching
instructions that will actually be executed, the processor needs to know whether the branch will be “taken”
(and consequently fetch the target instruction) or “not taken” (and fetch the fall-through code). Since a
branch instruction is not actually evaluated for several cycles after it’s been fetched, the processor predicts
the branch outcome. The processor then uses the prediction to fetch instructions that are hopefully needed
next.

2 Your Task

Dynamic branch prediction is implemented as a set of hardware data structures and logic that tells the
processor whether a branch is likely to be taken or not taken. In this assignment, you will write a program
that simulates the behavior of three branch predictors and, using a set of benchmark programs, compare
their ability to correctly predict branch outcomes.

For all three predictors you’ll use the same amount of hardware for their data structures, although for
each predictor the hardware may be used to hold different types of data and may be configured differently.
Your hardware budget is set at a maximum of 4 KB, which is a small, but still reasonable size for current
low-end or low-power processors.

For one predictor, you will vary the size of these hardware structures and analyze the impact of changing
the predictor’s configuration on its prediction accuracy.

Finally, you should provide a quantitative analysis in support of your conclusions about the performance
of the different predictor designs. Think about the difference between the predictors and how these differences
should affect performance. Does your data support your hypotheses about the relative performance of the
predictors? Your report should explain the data you collect, and describe your reasons for concluding that
one particular predictor design is better than another.

2.1 The Predictors

Three predictors will be involved in your study:

• Static branch prediction

• Local (i.e., per-branch), two-bit predictor

• Global branch history register, global pattern history table, two-level adaptive (or correlating) predic-
tor.

1

The static predictor will serve as your base case, against which you compare the others. It has already been
implemented for you, to show you how branch predictors can be implemented in our software infrastructure.

For the dynamic predictors, you should implement the prediction with two-bit saturating counters, which
will be discussed in section.

2.2 The Quantitative Analysis

Once you have implemented your predictors, you need to figure out how well they predict, using prediction
accuracy as your metric. You will do this by running a set of programs on all of your branch predictor
simulators. (The simulation infrastructure and benchmarks are described below in Section 3.) When your
simulator is finished running a program, it will automatically report how many correct predictions each of
your predictors made, as well as some other summary information about the execution. Use thee metrics to
gain insight into the performance of the three prediction strategies.

For each predictor create a plot that shows its relative accuracy for each benchmark. It may be that for
some applications some predictors work better and for other applications other predictors work better. If
this is the case, say so and try to hypothesize why this may be the case.

In general which strategy, basing a prediction on the behavior of individual branches or basing it on
execution paths through the program, works the best. How might you change the design/configuration of
the more poorly performing strategy to enable it to match the better performer? Implement your new design
and empirically evaluate the extent to which its performance approaches that of the better predictor. What
are your conclusions from this experiment?

Write up your results and analysis in a report, as outlined in the report handout and illustrated in the
sample reports on the course web site.

3 Simulation Infrastructure

The simulation infrastructure is built using a binary instrumentation tool called Pin (http://pintool.org).
The first discussion section will cover what binary instrumentation is and how Pin works. For this assignment,
you don’t need to understand how to use Pin in detail.

Pin runs a specified program, subject to a set of rules and modifications described in a “pintool”. A
pintool is able to identify certain events during a program’s execution, and call arbitrary code (i.e., code you
write) when those events occur.

For this assignment you’ll use a pintool called bp. You are going to write a set of plugins for bp that
implement various branch prediction strategies. bp is designed to call the code you wrote in these plugins
when it encounters a branch during execution, thus simulating a particular branch prediction technique.

To make bp aware of your plugins, it takes a “-predictor” argument, that takes a comma-separated list
of .so files. These shared object files should implement different predictors. For example, if you have two
predictors implemented, called two-bit.so and global.so, and you want to run them both on an execution
of some program, you would use the following command line:

pin -t bp -predictor two-bit.so,global.so -- <program> <args>

A version of Pin that we can all share is installed at /cse/courses/cse471/15sp/PIN.

Implementing a Predictor Plugin. You will write plugins as new classes that derive from the Predictor
base class described in Predictor.h. An example to get you going is declared and defined in StaticPredictor.h/.cpp.
You should use these files as a template for all your prediction schemes.

Your predictor plugins must define three methods:

1. The predictor’s constructor

2. The predictBranch method

2

3. The updatePredictor method

Initializing Your Predictor. Your predictor’s constructor should set up your predictor’s data structures.
The simulator infrastructure uses the “Factory” design pattern. In order for your predictor to be correctly
loaded, you need to include the factory function extern "C" Predictor * Create() in the same source file
as your predictor’s definition. This function must not be a member of your predictor’s class. This function
should return a new instance of your Predictor’s class.

Predicting Branches and Updating Your Predictor. The predictBranch() method runs before a
branch executes, and receives the branch instruction’s address as its argument. You will write it so that it
returns the decision of the predictor (either Taken or NotTaken).

updatePredictor() is called after a branch executes. It takes a branch instruction’s address, and the
outcome of that branch as its arguments. This method should update the data structures associated with
your predictor based on the outcome of the branch. updatePredictor() does not return a value.

Building Your Plugins. Please implement one predictor per .h/.cpp pair only (i.e., putting two predictors
in one file won’t work). You can build your plugins using g++. Be sure to specify the -fPIC and -shared

options, because your plugins need to be built as shared libraries. We’ve included a Makefile, and you can
also add your plugins’ source filenames to the list that includes StaticPredictor.cpp, and it will get built
when you type make.

3.1 Benchmarks

The PARSEC benchmarks are installed at /cse/courses/cse471/15sp/Benchmarks/parsec-2.1, also avail-
able via a link in the Homework section of the course web pages. You will use these programs to evaluate
your predictors’ prediction accuracy. You can run the parsec benchmarks using the parsecmgmt script that is
located at /cse/courses/cse471/15sp/Benchmarks/parsec-2.1/bin. The script will run the benchmarks
for you, and you can tell it to run them in our simulator using command line arguments.

There are several important arguments:

• -a run This option tells parsecmgmt to run the benchmarks

• -p benchmark name This specifies which benchmark to run. If you specify nothing, parsecmgmt
runs them all. To see which are available, you can run parsecmgmt -a info

• -n 1 This option tells parsecmgmt to run with one thread. Stick to one because our simulator is not
thread-safe.

• -i input The input can be either ”test”, ”simsmall”, ”simmedium”, ”simlarge”, or ”native”. Stick to
”test” and ”simsmall” or your experiments will take a very long time (hours).

• -d working directory When the benchmarks run, they create temporary files. This option determines
where those files are created. Be sure it is a directory you can write to.

• -s run script This option tells parsecmgmt what program to use to run the benchmark. In our case,
it should use our simulator, so you need to pass in the simulator command line (i.e., the pin command
line). This option is finicky; you need to enclose the simulator command line in single quotes, and you
need to specify absolute paths to everything involved (pin, bp, and your branch predictors).

For your reference, we provide an example of the commands you must execute to successfully run parsec
using our simulator on attu. First, you must set a few environment variables using the following three
commands.

3

export LD_LIBRARY_PATH=/courses/cse471/15sp/lib32

export PATH=$PATH:/cse/courses/cse471/15sp/Benchmarks/parsec-2.1/bin

export PATH=$PATH:/cse/courses/cse471/15sp/PIN/PIN

After setting these environment variables, you can execute the following command to run parsec.

parsecmgmt -a run -p blackscholes -i test -n 1 -d . -s

’pin -t /cse/courses/cse471/15sp/PIN/PIN/source/tools/CSE471-BP/obj-intel64/bp.so

-predictor /cse/courses/cse471/15sp/Assignments/HW1-BranchPrediction/StaticPredictor.so

-out ./test.out -- ’

Notice several things about this command line. First, “.” is passed as the argument to “-d”. Second,
the entire “-s” argument is enclosed in single quotes. Third, there is a space after the “--” at the end of
the “-s” argument. The “run.sh” script in the homework files contains this code, feel free to use this script
as a starting point to automate your experiments.

Your quantitative evaluation must include the PARSEC benchmarks, but is not restricted to these pro-
grams. A cool aspect of using Pin is that Pin-based simulators can simulate any x86 binary. Feel free to
experiment.

We recommend that while you are developing your branch predictors, you write test cases for yourself
to make testing more controlled. The benchmarking infrastructure has a long turn-around time, and if you
are debugging, it is more productive to use small test programs that evaluate particular branch prediction
circumstances.

4

