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Introduction 

Why memory subsystem design is important 

• CPU speeds increase 25%-30% per year 

• DRAM speeds increase 2%-11% per year 
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Memory Hierarchy 

Levels of memory with different sizes & speeds 

• close to the CPU: small, fast access 

• close to memory: large, slow access 

 

Memory hierarchies improve performance 

1.  caches: demand-driven storage 

2. principal of locality of reference 

• temporal: a referenced word will be referenced again soon 

• spatial: words near a reference word will be referenced soon 

3. speed/size trade-off in technology 

 fast access for most references 

 

First Cache: IBM 360/85 in the late ‘60s 
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Cache Organization 

 

Block: 

• # bytes associated with 1 tag 

• usually the # bytes transferred on a memory request 

Set: the blocks that can be accessed with the same index bits 

Associativity: the number of blocks in a set 

• direct mapped 

• set associative 

• fully associative 

Size: # bytes of data 

How do you calculate this? 
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Logical Diagram of a Cache 
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Logical Diagram of a Set Associative Cache 
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Accessing a Cache 

General formulas 

• number of index bits = log2(cache size / block size) 

(for a direct mapped cache) 

• number of index bits = log2(cache size /( block size * associativity)) 

(for a set-associative cache) 
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Design Tradeoffs 

Cache size 

the bigger the cache, 

+ the higher the hit ratio 

-  the longer the access time 
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Design Tradeoffs 

Block size 

the bigger the block, 

+ the better the spatial locality 

+ less block transfer overhead/block 

+ less tag overhead/entry (assuming same number of entries) 

-  might not access all the bytes in the block 
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Design Tradeoffs 

Associativity 

the larger the associativity, 

+ the higher the hit ratio 

-  the larger the hardware cost (comparator/set) 

-  the longer the hit time (a larger MUX) 

-  need hardware that decides which block to replace 

-  increase in tag bits (if same size cache) 

 

Associativity is more important for small caches than large 

because more memory locations map to the same line 

e.g., TLBs! 
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Design Tradeoffs 

Memory update policy 

• write-through 

• performance depends on the # of writes 

• store buffer decreases this 

• check for data on load misses 

• merge stores to the same block 

• write-back 

• performance depends on the # of dirty block replacements 

but... 

• dirty bit & logic for checking it 

• must flush the cache before I/O 

• optimization: fetch before replace 

• both use a merging store buffer 
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Design Tradeoffs 

Cache contents 

• separate instruction & data caches 

• separate access  double the bandwidth 

• shorter access time 

• different configurations for I & D 

• unified cache 

• lower miss rate 

• less cache controller hardware 
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Address Translation 

In a nutshell: 

• maps a virtual address to a physical address 

• number of page/page frame offset bits determines the page/page 

frame size 
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TLB 

Translation Lookaside Buffer (TLB): 

• cache of most recently translated virtual-to-physical page mappings 

• typical configuration 

• 64/128-entry 

• fully associative 

• 4-8 byte blocks 

• .5 -1 cycle hit time 

• low tens of cycles miss penalty 

• misses can be handled in software, software with hardware assists, 
firmware or hardware 

• write-back 

• works because of locality of reference 

• much faster than address translation using the page tables 
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Using a TLB 

(1)  Access a TLB using the virtual page number. 

(2)  If a hit, 

concatenate the physical page number & the page offset bits to form a 

physical address; 

set the page reference bit; 

if writing, set the page dirty bit. 

(3)  If a miss, 

get the physical address from the page table; 

evict a TLB entry & update page dirty/reference bits in the page table; 

update the TLB with the new mapping. 
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Design Tradeoffs 

Virtual or physical addressing 

 

Virtually-addressed caches: 

• access with a virtual address (index & tag) 

• do address translation on a cache miss 

+   faster for hits because no address translation 

+   compiler support for better data placement 
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Design Tradeoffs 

Virtually-addressed caches: 

-    need to flush the cache on a context switch 

• thread identification (TID) can avoid this 

-    synonyms 

•  “the synonym problem” 

• if 2 processes are sharing data, two (different) virtual 
addresses map to the same physical address 

• 2 copies of the same data in the cache 

• on a write, only one will be updated; so the other has stale 
data 

• a solution: page coloring 

• processes share segments;  all shared data have the same 
offset from the beginning of a segment, i.e., the same low-
order bits 

• cache must be <= the segment size 
(more precisely, each set of the cache must be <= the 
segment size) 

• index taken from segment offset, tag compare on segment # 

 Spring 2015 16 CSE 471:  Memory Hierarchy 



9 

Design Tradeoffs 

Virtual or physical addressing 

 

Physically-addressed caches 

• access with a physical index & compare with physical tag 

• do address translation on every cache access 

+   no cache flushing on a context switch 

+   no synonym problem 
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Design Tradeoffs 

 

Physically-addressed caches 

-   In a straightforward implementation, the hit time increases because the 
virtual address must be translated before the cache access 

+  increase in hit time can be avoided if address translation is done in 
parallel with the cache access 

• restrict cache size so that cache index bits are in the page offset 
(virtual & physical bits are the same): virtually indexed 

• access the TLB & cache at the same time 

• compare the physical tag from the cache to the physical address 
(page frame #) from the TLB: physically tagged 

• can increase cache size by increasing associativity, but still use 
page offset bits for the index 

Spring 2015 18 CSE 471:  Memory Hierarchy 



10 

Cache Hierarchies 

Cache hierarchy  

• different caches with different sizes & access times & purposes 

+  decrease effective memory access time:  

• many misses in the L1 cache will be satisfied by the L2 cache 

• avoid going all the way to memory 
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Cache Hierarchies 

Level 1 cache goal: fast access 

so minimize hit time (the common case)  
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Cache Hierarchies 

Level 2 cache goal: keep traffic off the system bus 
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Cache Metrics 

Hit (miss) ratio = 

 

• intermediate metric: measures how well the cache functions 

• useful for understanding cache behavior relative to the number of 
references 

  

 

Effective access time = 

 

• intermediate metric 

• (rough) average time it takes to do a memory reference 

• performance of the memory system, including factors that depend on the 
implementation 

• intermediate metric 
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Measuring Cache Hierarchy Performance 

Effective Access Time for a cache hierarchy:... 
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Local Miss Ratio: 

 

• # accesses for the L1 cache: the number of references 

• # accesses for the L2 cache: the number of misses in the L1 cache 

 

Example:   1000 references 

      40 L1 misses 

      10 L2 misses 

     

local MR (L1): 

local MR (L2): 

Measuring Cache Hierarchy Performance 
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Measuring Cache Hierarchy Performance 

Global Miss Ratio: 

 

 

Example:    1000 References 

       40 L1 misses 

       10 L2 misses  

  

global MR (L1): 

 

global MR (L2): 
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Miss Classification 

Usefulness is in providing insight into the causes of misses 

• does not explain what caused a particular, individual miss 

 

Compulsory 

• first reference misses 

• decrease by increasing block size 

Capacity 

• due to finite size of the cache 

• decrease by increasing cache size 

Conflict 

• too many blocks map to the same set 

• decrease by increasing associativity 

Coherence (invalidation) 

• decrease by decreasing block size + improving processor locality 
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