
1

Introduction

Why memory subsystem design is important

• CPU speeds increase 25%-30% per year

• DRAM speeds increase 2%-11% per year

Spring 2015 1 CSE 471: Memory Hierarchy

Memory Hierarchy

Levels of memory with different sizes & speeds

• close to the CPU: small, fast access

• close to memory: large, slow access

Memory hierarchies improve performance

1. caches: demand-driven storage

2. principal of locality of reference

• temporal: a referenced word will be referenced again soon

• spatial: words near a reference word will be referenced soon

3. speed/size trade-off in technology

 fast access for most references

First Cache: IBM 360/85 in the late ‘60s

Spring 2015 2 CSE 471: Memory Hierarchy

2

Cache Organization

Block:

• # bytes associated with 1 tag

• usually the # bytes transferred on a memory request

Set: the blocks that can be accessed with the same index bits

Associativity: the number of blocks in a set

• direct mapped

• set associative

• fully associative

Size: # bytes of data

How do you calculate this?

Spring 2015 3 CSE 471: Memory Hierarchy

Logical Diagram of a Cache

Spring 2015 4 CSE 471: Memory Hierarchy

3

Logical Diagram of a Set Associative Cache

Spring 2015 5 CSE 471: Memory Hierarchy

Accessing a Cache

General formulas

• number of index bits = log2(cache size / block size)

(for a direct mapped cache)

• number of index bits = log2(cache size /(block size * associativity))

(for a set-associative cache)

Spring 2015 6 CSE 471: Memory Hierarchy

4

Design Tradeoffs

Cache size

the bigger the cache,

+ the higher the hit ratio

- the longer the access time

Spring 2015 7 CSE 471: Memory Hierarchy

Design Tradeoffs

Block size

the bigger the block,

+ the better the spatial locality

+ less block transfer overhead/block

+ less tag overhead/entry (assuming same number of entries)

- might not access all the bytes in the block

Spring 2015 8 CSE 471: Memory Hierarchy

5

Design Tradeoffs

Associativity

the larger the associativity,

+ the higher the hit ratio

- the larger the hardware cost (comparator/set)

- the longer the hit time (a larger MUX)

- need hardware that decides which block to replace

- increase in tag bits (if same size cache)

Associativity is more important for small caches than large

because more memory locations map to the same line

e.g., TLBs!

Spring 2015 9 CSE 471: Memory Hierarchy

Design Tradeoffs

Memory update policy

• write-through

• performance depends on the # of writes

• store buffer decreases this

• check for data on load misses

• merge stores to the same block

• write-back

• performance depends on the # of dirty block replacements

but...

• dirty bit & logic for checking it

• must flush the cache before I/O

• optimization: fetch before replace

• both use a merging store buffer

Spring 2015 10 CSE 471: Memory Hierarchy

6

Design Tradeoffs

Cache contents

• separate instruction & data caches

• separate access  double the bandwidth

• shorter access time

• different configurations for I & D

• unified cache

• lower miss rate

• less cache controller hardware

Spring 2015 11 CSE 471: Memory Hierarchy

Address Translation

In a nutshell:

• maps a virtual address to a physical address

• number of page/page frame offset bits determines the page/page

frame size

Spring 2015 12 CSE 471: Memory Hierarchy

7

TLB

Translation Lookaside Buffer (TLB):

• cache of most recently translated virtual-to-physical page mappings

• typical configuration

• 64/128-entry

• fully associative

• 4-8 byte blocks

• .5 -1 cycle hit time

• low tens of cycles miss penalty

• misses can be handled in software, software with hardware assists,
firmware or hardware

• write-back

• works because of locality of reference

• much faster than address translation using the page tables

Spring 2015 13 CSE 471: Memory Hierarchy

Using a TLB

(1) Access a TLB using the virtual page number.

(2) If a hit,

concatenate the physical page number & the page offset bits to form a

physical address;

set the page reference bit;

if writing, set the page dirty bit.

(3) If a miss,

get the physical address from the page table;

evict a TLB entry & update page dirty/reference bits in the page table;

update the TLB with the new mapping.

Spring 2015 14 CSE 471: Memory Hierarchy

8

Design Tradeoffs

Virtual or physical addressing

Virtually-addressed caches:

• access with a virtual address (index & tag)

• do address translation on a cache miss

+ faster for hits because no address translation

+ compiler support for better data placement

Spring 2015 15 CSE 471: Memory Hierarchy

Design Tradeoffs

Virtually-addressed caches:

- need to flush the cache on a context switch

• thread identification (TID) can avoid this

- synonyms

• “the synonym problem”

• if 2 processes are sharing data, two (different) virtual
addresses map to the same physical address

• 2 copies of the same data in the cache

• on a write, only one will be updated; so the other has stale
data

• a solution: page coloring

• processes share segments; all shared data have the same
offset from the beginning of a segment, i.e., the same low-
order bits

• cache must be <= the segment size
(more precisely, each set of the cache must be <= the
segment size)

• index taken from segment offset, tag compare on segment #

 Spring 2015 16 CSE 471: Memory Hierarchy

9

Design Tradeoffs

Virtual or physical addressing

Physically-addressed caches

• access with a physical index & compare with physical tag

• do address translation on every cache access

+ no cache flushing on a context switch

+ no synonym problem

Spring 2015 17 CSE 471: Memory Hierarchy

Design Tradeoffs

Physically-addressed caches

- In a straightforward implementation, the hit time increases because the
virtual address must be translated before the cache access

+ increase in hit time can be avoided if address translation is done in
parallel with the cache access

• restrict cache size so that cache index bits are in the page offset
(virtual & physical bits are the same): virtually indexed

• access the TLB & cache at the same time

• compare the physical tag from the cache to the physical address
(page frame #) from the TLB: physically tagged

• can increase cache size by increasing associativity, but still use
page offset bits for the index

Spring 2015 18 CSE 471: Memory Hierarchy

10

Cache Hierarchies

Cache hierarchy

• different caches with different sizes & access times & purposes

+ decrease effective memory access time:

• many misses in the L1 cache will be satisfied by the L2 cache

• avoid going all the way to memory

Spring 2015 19 CSE 471: Memory Hierarchy

Cache Hierarchies

Level 1 cache goal: fast access

so minimize hit time (the common case)

Spring 2015 20 CSE 471: Memory Hierarchy

11

Cache Hierarchies

Level 2 cache goal: keep traffic off the system bus

Spring 2015 21 CSE 471: Memory Hierarchy

Cache Metrics

Hit (miss) ratio =

• intermediate metric: measures how well the cache functions

• useful for understanding cache behavior relative to the number of
references

Effective access time =

• intermediate metric

• (rough) average time it takes to do a memory reference

• performance of the memory system, including factors that depend on the
implementation

• intermediate metric

Spring 2015 22 CSE 471: Memory Hierarchy

12

Measuring Cache Hierarchy Performance

Effective Access Time for a cache hierarchy:...

Spring 2015 23 CSE 471: Memory Hierarchy

Local Miss Ratio:

• # accesses for the L1 cache: the number of references

• # accesses for the L2 cache: the number of misses in the L1 cache

Example: 1000 references

 40 L1 misses

 10 L2 misses

local MR (L1):

local MR (L2):

Measuring Cache Hierarchy Performance

Spring 2015 24 CSE 471: Memory Hierarchy

13

Measuring Cache Hierarchy Performance

Global Miss Ratio:

Example: 1000 References

 40 L1 misses

 10 L2 misses

global MR (L1):

global MR (L2):

Spring 2015 25 CSE 471: Memory Hierarchy

Miss Classification

Usefulness is in providing insight into the causes of misses

• does not explain what caused a particular, individual miss

Compulsory

• first reference misses

• decrease by increasing block size

Capacity

• due to finite size of the cache

• decrease by increasing cache size

Conflict

• too many blocks map to the same set

• decrease by increasing associativity

Coherence (invalidation)

• decrease by decreasing block size + improving processor locality

 Spring 2015 26 CSE 471: Memory Hierarchy

