
1

Issues in Multiprocessors

Which programming model for interprocessor communication

• shared memory

• regular loads & stores

• SGI UV, Intel Core i3, i5, i7, AMD Opteron “Bulldozer”, Sun
SPARC T4, ARM Cortex A5, Nvidia Tegra 3

• message passing

• can directly access only private address space

• explicit sends & receives for shared data

• IBM BlueGene/Q, Cray XE6, Fujitsu K Computer, Intel Paragon

Spring 2015 1 CSE 471: Multiprocessors

Shared Memory vs. Message Passing

Shared memory

+ simple parallel programming model

• global shared address space

• not worry about data locality but

get better performance when program for data placement

 lower latency when data is local

• but can do data placement if it is crucial, but don’t
have to

• hardware maintains data coherence & threads synchronize to
order processor’s accesses to shared data

• almost like uniprocessor code so parallelizing by programmer
or compiler is easier

 can focus on program semantics, not inter-processor
communication or data layout

Spring 2015 2 CSE 471: Multiprocessors

2

Shared Memory vs. Message Passing

Shared memory

+ low latency (no message passing software) but

overlap of communication & computation

latency-hiding techniques can be applied to message passing

machines

+ higher bandwidth for small transfers but

usually the only choice

Spring 2015 3 CSE 471: Multiprocessors

Shared Memory vs. Message Passing

Message passing

+ abstraction in the programming model encapsulates the
communication costs but

overheads: copying, buffer management, protection

additional language constructs

need to program for nearest neighbor communication

+ no coherency hardware

+ good throughput on large transfers but

what about small transfers?

+ more scalable (memory latency for uniform memory doesn’t scale
with the number of processors) but

large-scale SM has distributed memory also

• hah! so you’re going to adopt the message-passing
model?

Spring 2015 4 CSE 471: Multiprocessors

3

Shared Memory vs. Message Passing

Why there was a debate

• little experimental data

• not separate implementation from programming model

• can emulate one paradigm with the other

• MP on SM machine

message buffers in local (to each processor) memory

 copy messages by ld/st between buffers

• SM on MP machine

ld/st becomes a message copy

 sloooooooooow

Who won?

Spring 2015 5 CSE 471: Multiprocessors

Issues in Multiprocessors

Which execution model

• control parallel

• identify & synchronize different asynchronous threads

• data parallel

• same operation on different parts of the shared data space

• dataflow

• execution occurs because of the arrival of operand values

Spring 2015 6 CSE 471: Multiprocessors

4

Issues in Multiprocessors

How to express error-free parallelism (hardest problem)

• language support

• HPF, ZPL

• runtime library constructs to support threads

• coarse-grain, explicitly parallel C programs

• automatic (compiler) thread creation

• implicitly parallel C & Fortran programs, e.g., SUIF & PTRANS
compilers

• HW & compiler support for maintaining correctness

Spring 2015 7 CSE 471: Multiprocessors

Flynn’s Taxonomy

Classifies computers by control & data streams

Spring 2015 8 CSE 471: Multiprocessors

Single Instruction, Single Data
(SISD)

(single-context uniprocessor)

Single Instruction, Multiple Data
(SIMD)

(single PC: Vector, GPUs)

Multiple Instruction, Single Data
(MISD)

(systolic arrays, streaming
processors)

Multiple Instruction, Multiple Data
MIMD

(CMPs, MT)

5

Systolic Architectures

Replace single processor with array of regular (or specialized) processing

elements

Orchestrate data flow for high throughput with less memory access

M

PE

M

PE PE PE

Important Issues

• Key points in the programming model debate for inter-processor
communication

• Flynn’s taxonomy

Spring 2015 10 CSE 471: Multiprocessors

