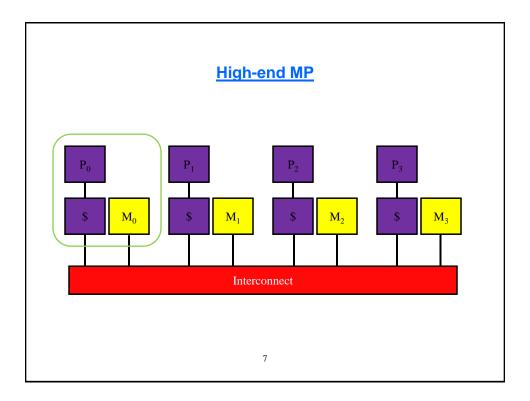
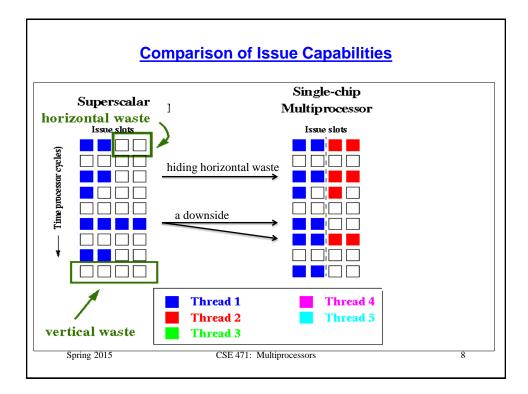

Why Multiprocessors?				
 Moore's Law predicted a doubling of processor performance every couple of years true until about 2000 				
Limits on the performance of a single processor: what are they?				
Spring 2015 CSE 471: Multiprocessors 1				


	Why Multiprocessors	
1. Utilizes coarse	r granularities than ILP	
2. Lots of workloa	d opportunity	
Scientific comp	outing/supercomputing	
 Examples: 	weather simulation, aerodynamics, protein folding	ng
 Each proce 	essor computes for a part of the grid	
 Server workloa 	ads	
 Example: a 	airline reservation database	
 Many conc 	urrent updates, searches, lookups, queries	
	s handle different requests	
 Media workload 	ds	
 Processors 	s compress/decompress different parts of image/	frames
 Desktop worklop 		
Gaming worklo		
3. Can now fit mu simpler	Itiple processors on a chip; but each one is proba	ably
What would you de	o with a billion transistors on a chip? Or more?	
Spring 2015	CSE 471: Multiprocessors	2


<section-header><section-header><list-item><list-item><list-item><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<u>Multiprocessors</u>				
	 bus-based simple, but a bottleneck broadcast cache coherency protocol physically centralized memory uniform memory access (UMA machine) today's small CMPs: Intel Core i3, i5, i7 (2-6 cores), AMD Opteron "Bulldozer" (4-16 cores), Sun SPARC T4 (8 cores per processor, 4 processors per system), ARM Cortex A5 (2 cores), Nvidia Tegra 3 (4 cores) 			
	Spring 2015 CSE 471: Multiprocessors	4		

