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Multithreaded Architectures 

 

Multiprocessors 

• multiple threads execute on different processors 

 

Uniprocessors 

• multiple threads execute on the same processor if they are context 

switched in and out 

 

Multithreaded processors 

• multiple threads execute on the same processor without context 

switches 
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Motivation for Multithreaded Architectures 

Performance, again. 

 

Past: performance suffered from a particular source of latency 

 

Today: all sources of latency 

Individual processors not executing code at their hardware potential 

despite increasingly complex parallel hardware 

• increase in instruction issue bandwidth & number of functional units 

• out-of-order execution 

• techniques for decreasing/hiding branch & memory latencies 

• for example:  

• processor utilization was decreasing 

• instruction throughput not increasing in proportion to the 

increase in issue width 
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Motivation for Multithreaded Architectures 
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Motivation for Multithreaded Architectures 

Major cause of low instruction throughput: 

• more complicated than a particular source of latency 

• the lack of instruction-level parallelism in a single executing thread 

 

Therefore the solution: 

•  has to be more general than building a smarter cache or a more 

accurate branch predictor 

• has to involve more than one thread 
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Multithreaded Processors 

 

Multithreaded processors 

• execute instructions from multiple threads 

• execute multiple threads without software context switching 

• hardware support 

• holds processor state for more than one thread of execution 

• registers 

• PC 

• each thread’s state is a hardware context 
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Multithreaded Processors 

 

Effect on performance: higher instruction throughput 

• threads hide latencies for each other 

• utilize thread-level parallelism (TLP) to compensate for low 

single-thread ILP 

• may degrade latency of individual threads                                   

(but improves the execution time of all threads by increasing 

instruction throughput) 
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Traditional Multithreading 

Traditional multithreaded processors hardware switch to a different 
context to avoid processor stalls 

 

 

Two styles of traditional multithreading 

Each trades off single thread latency for multiple thread throughput in a 
different way 

1. coarse-grain multithreading 

2. fine-grain multithreading 
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Traditional Multithreading 

Coarse-grain multithreading 

• switch on a long-latency operation (e.g., L2 cache miss) 

• another thread executes while the miss is handled 

• modest increase in instruction throughput 

• doesn’t hide latency of short-latency operations 

• no switch if no long-latency operations 

• need to fill the pipeline on a switch 

• potentially no slowdown to the thread with the miss, 

if stall is long, pipeline is short & switch back fairly promptly 

• Denelcor HEP, IBM RS64 III, IBM Northstar/Pulsar 
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Traditional Multithreading 

Fine-grain multithreading 

• can switch to a different thread each cycle (usually round robin) 

• hides latencies of all kinds 

• larger increase in instruction throughput but slows down the 

execution of each thread 

• Cray MTA 
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Simultaneous Multithreading 
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Simultaneous Multithreading (SMT) 

Third style of multithreading, different concept 

3. simultaneous multithreading (SMT) 

• no hardware context switching 

• same-cycle multithreading:  can issue multiple instructions 

from multiple threads each cycle 

• huge boost in instruction throughput with less degradation to 

individual threads 

• Intel Core i7 (Hyperthreading); IBM Power7, BlueGene/Q 
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Simultaneous Multithreading 
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Cray (Tera) MTA  

 

 

Goals 

• uniform memory access 

• lightweight synchronization 

• heterogeneous parallelism 
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Cray MTA  

Fine-grain multithreaded processor 

• can switch to a different thread each cycle 

• switches to ready threads only 

• up to 128 hardware contexts/processor 

• lots of latency to hide, mostly from the multi-hop 
interconnection network 

• average instruction latency for computation: 22 cycles          
(i.e., 22 instruction streams needed to keep functional units 
busy) 

• average instruction latency including memory: 120 to 200-
cycles 
(i.e., 120 to 200 instruction streams needed to hide all latency, 
on average) 

• processor state for all 128 contexts 

• GPRs (total of 4K registers!) 

• status registers (includes the PC) 

• branch target registers 
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Cray MTA 

Interesting features 

• No data caches 

• increases the maximum latency for data accesses but reduces 

the variation between memory ops 

• to avoid having to keep caches coherent 

• memory-side buffers instead 

• L1 & L2 instruction caches 

• instructions have more locality & have no coherency problem 

• prefetch fall-through & target code 
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Cray MTA 

Interesting features 

• no paging 

• want pages pinned down in memory for uniform latency 

• page size is 256MB 

 

• VLIW instructions 

• memory/arithmetic/branch 

• load/store architecture 

• need a good code scheduler 
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Cray MTA 

Interesting features 

• Trade-off between avoiding memory bank conflicts & 
exploiting spatial locality for data 

 

• conflicts: 

• memory distributed among processing elements (PEs) 

• memory addresses are randomized to avoid conflicts 

• want to fully utilize all memory bandwidth 

• locality: 

• run-time system can confine consecutive addresses to a single 
(close-by) memory unit  
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Cray MTA 

Interesting features 

• tagged memory, i.e., full/empty bits  

• indirectly set full/empty bits to prevent data races 

• prevents a consumer from loading a value before a 
producer has written it 

• prevents a producer from overwriting a value before a 
consumer has read it 

• example for the consumer: 

• set to empty when producer instruction starts executing 

• consumer instructions block if try to read the producer 
value 

• set to full when producer writes value 

• consumers can now read a valid value 
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Cray MTA 

Interesting features 

• tagged memory, i.e., full/empty bits  

• explicitly set full/empty bits for cheap thread synchronization 

• primarily used accessing shared data 

• very fine-grain synchronization (on the level of a data word) 

• locking: read memory location & set to empty 

• other readers are blocked 

• unlocking: write memory location & set to full 
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SMT: The Executive Summary 

Simultaneous multithreaded (SMT) processors combined designs 

from: 

• traditional multithreaded processors 

• multiple per-thread hardware contexts 

• out-of-order superscalar processors 

• wide instruction issue 

• out-of-order execution 

• hardware register renaming 
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SMT: The Executive Summary 

The combination was a processor with two important capabilities. 

 

1)  same-cycle multithreading: issues & executes instructions from 

multiple threads each cycle 

  => converting thread-level parallelism (TLP) to  

      cross-thread instruction-level parallelism (ILP) 
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Functional Units 

SMT: The Executive Summary 

The combination was a processor with two important capabilities. 

 

2)  thread-shared hardware resources, both logic & memories 
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1 2 3 4 

Threads 

Fetch Logic 

Functional Units 

Instruction Queue 
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Performance Implications 
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2X 4X 3X 

SPEC95 

SPEC2000 

Splash 2 

TPC B 

TPC D 

Apache 

OS 

Does this Processor Sound Familiar? 

Technology transfer  => 

• 2-context Intel  Pentium 4; Xeon; Core i5, i7; Atom 

(Hyperthreading) 

• 2-context IBM Power5 & Power6; 4-context IBM Power7 (8 cores) 

& BlueGene/Q (16 cores) 

• 4-context Compaq 21464 
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An SMT Architecture 

Three primary goals for this architecture: 

1. Achieve significant throughput gains with multiple threads 

2. Minimize the performance impact on a single thread executing 

alone 

3. Minimize the microarchitectural impact on a conventional out-of-

order superscalar design 
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Implementing SMT  
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Implementing SMT 

No special hardware for scheduling instructions from multiple 
threads 

• use the hardware register renaming & dynamic instruction 
scheduling mechanisms as a superscalar 

• register renaming hardware eliminates false dependences both 
within a thread (just like a superscalar) & also between threads 

 

How it works: 

• map thread-specific architectural registers onto a pool of thread-
independent physical registers 

• for example: A3 in T1 onto P5; A3 on T2 onto P6 

• operands are thereafter called by their physical names 

• an instruction is issued when its operands become available & a 
functional unit is free 

• instruction scheduler not have to consider thread IDs when 
dispatching instructions to functional units 
(unless threads have different priorities) 
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From Superscalar to SMT 

Extra pipeline stages for accessing thread-shared register files 

• 8 hardware contexts * 32 registers + renaming registers 

 

SMT instruction fetcher (ICOUNT chooser) 

• fetch from 2 threads each cycle 

• count the number of instructions for each thread in the pre-

execution stages 

• pick the 2 threads with the lowest number 

• in essence fetching from the two highest throughput threads 
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From Superscalar to SMT 

Per-thread hardware 

• small stuff 

• all part of current out-of-order processors 

• none endangered the cycle time 

 

1. other per-thread processor state, e.g., 

• program counters 

• return stacks 

• thread identifiers, e.g., with BTB entries, TLB entries 

2. per-thread bookkeeping for, e.g., 

• instruction queue flush on branch mispredictions 

• instruction commit 

• trapping 

 

This is why there is only a 15% increase in chip area on a 4 hardware-
context Alpha 21464. 
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Implementing SMT 

Thread-shared hardware: 

• branch target buffer 

• instruction queues 

• functional units 

• all caches (physical tags) 

• TLBs 

• store buffers & MSHRs 

 

Thread-shared hardware is why there is little single-thread performance 

degradation (~1.5%). 

 

What hardware might you not want to share? 
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Implementing SMT 

Does thread-shared hardware cause more conflicts? 

• 2X more data cache misses 

 

Does it matter? 

• threads hide miss latencies for each other 

• data sharing 
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SMT 

Interesting features 

• thread-blind instruction scheduling 

 

• thread chooser for instruction fetching 

 

• hardware queuing locks for cheap synchronization 

• orders of magnitude faster because does not access memory 

• can parallelize previously unparallelizable codes 

 

• software-directed register deallocation 

• communicate last-use information to HW for early register 

deallocation 

• now need fewer renaming registers 
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A Register Renaming Example 

Code Segment Register Mapping Comments 

ld r7,0(r6) r7 -> p1 p1 is allocated 
...   

add r8, r9, r7 r8 -> p2 use p1, not r7 

...   

sub r7, r2, r3 r7 -> p3 
p3 is allocated 
p1 is deallocated 
when sub commits  

   

 

What does SMT change? 

1. Costs of data sharing 

 

CMPs 

Threads reside on distinct processors & inter-thread communication 

is a big overhead. 

Parallelizing compilers attempt to decompose applications to 

minimize inter-processor communication. 

Disjoint set of data & iterations for each thread 

 

SMT  

Threads execute on the same processor with thread-shared 

hardware. 

Inter-thread communication incurs no overhead. 
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SMT Compiler Strategy 

No special SMT-centered compilation is necessary 

 

However, if optimizations focused on data sharing, not data isolation, 

might SMT do better? 
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Tiling Example 

/* matrix multiple before */ 

for (i=0; i<n; i=i+1) 
 for (j=0; j<n; j=j+1){ 
  r = 0; 
  for (k=0; k<n; k=k+1) { 
   r = r + y[i,k] * z[k,j]; } 
  x[i,j] = r; 
  }; 

 

/* matrix multiply after tiling */ 

for (jj=0; jj<n; jj=jj+T) 

for (kk=0; kk<n; kk=kk+T) 
 

 for (i=0; i<n; i=i+1) 
 for (j=jj; j<min(jj+T-1,n); j=j+1) { 
  r = 0; 
  for (k=kk; k<min(kk+T-1,n); k=k+1) 
   {r = r + y[i,k] * z[k,j]; } 
  x[i,j] = x[i,j] + r; 
  }; 
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Tiling 

 

 

 

 

 

 

 

 

 

 

 

The Normal Way (blocked): 

Tiled to exploit data reuse, separate tiles/thread 

Often works, except when: large number of threads, 

large number of arrays, small data cache 

Issue of tile size sweet spot 

 

 

 

The SMT-friendly Way (cyclic) 

Threads share a tile so there is less pressure on the 

data cache 
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The Normal Way (blocked): 

Tiled to exploit data reuse, separate tiles/thread 

Often works, except when: large number of threads, 

large number of arrays, small data cache 

Issue of tile size sweet spot 

 

 

 

The SMT-friendly Way (cyclic) 

Threads share a tile so there is less pressure on the 

data cache 

Less sensitive to tile size 

• tiles can be large to reduce loop control overhead 

• cross-thread latency hiding hides misses 

• more adaptable to different cache configurations 
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Multicore vs. Multithreading 

If you wanted to execute multiple threads, would you build a: 

• Multicore with multiple, simple pipelines? 

 

 

 

• SMT with a single, higher performance pipeline? 

 

 

 

• Both together? 
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Multicore vs. Multithreading 

If you wanted to execute multiple threads, would you build a: 

• Multicore with multiple, separate pipelines? 

• simple, easy to design, build, test 

• probably faster clock 

• power? turn off unused cores 

• SMT with a single, larger pipeline? 

• better performance from same-cycle multithreading 

• better power/performance ratio 

 

• Both together? 

Intel Nehalem (Core-i7): up to 8 cores, 16 SMT threads 

4-context IBM Power7 (8 cores) 
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Important Issues 

Multithreaded processors 

• what are they? 

• what problem do they solve? 

• hardware support 

• 5th through-put vs. latency trade-off 

 

Coarse-grain vs. fine-grain vs. simultaneous multithreading 
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Important Issues 

Cray 

• what are its goals & how are they met? 

• full-empty bits vs. locks vs. transactional memory 

 

SMT 

• what are its goals & how are they met? 

• what extra hardware is needed, what extra hardware is not 

needed? 

• how does it do synchronization?  fetch instructions? schedule 

instructions? 

 

Matching hardware & compiler optimizations 
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