
5/5/2015

1

Multithreaded Architectures

Multiprocessors

• multiple threads execute on different processors

Uniprocessors

• multiple threads execute on the same processor if they are context

switched in and out

Multithreaded processors

• multiple threads execute on the same processor without context

switches

Spring 2015 1 471: Multithreaded Processors

Motivation for Multithreaded Architectures

Performance, again.

Past: performance suffered from a particular source of latency

Today: all sources of latency

Individual processors not executing code at their hardware potential

despite increasingly complex parallel hardware

• increase in instruction issue bandwidth & number of functional units

• out-of-order execution

• techniques for decreasing/hiding branch & memory latencies

• for example:

• processor utilization was decreasing

• instruction throughput not increasing in proportion to the

increase in issue width

 Spring 2015 2 471: Multithreaded Processors

5/5/2015

2

Motivation for Multithreaded Architectures

Spring 2015 3 471: Multithreaded Processors

Motivation for Multithreaded Architectures

Major cause of low instruction throughput:

• more complicated than a particular source of latency

• the lack of instruction-level parallelism in a single executing thread

Therefore the solution:

• has to be more general than building a smarter cache or a more

accurate branch predictor

• has to involve more than one thread

Spring 2015 4 471: Multithreaded Processors

5/5/2015

3

Multithreaded Processors

Multithreaded processors

• execute instructions from multiple threads

• execute multiple threads without software context switching

• hardware support

• holds processor state for more than one thread of execution

• registers

• PC

• each thread’s state is a hardware context

Spring 2015 5 471: Multithreaded Processors

Multithreaded Processors

Effect on performance: higher instruction throughput

• threads hide latencies for each other

• utilize thread-level parallelism (TLP) to compensate for low

single-thread ILP

• may degrade latency of individual threads

(but improves the execution time of all threads by increasing

instruction throughput)

Spring 2015 6 471: Multithreaded Processors

5/5/2015

4

Traditional Multithreading

Traditional multithreaded processors hardware switch to a different
context to avoid processor stalls

Two styles of traditional multithreading

Each trades off single thread latency for multiple thread throughput in a
different way

1. coarse-grain multithreading

2. fine-grain multithreading

Spring 2015 7 471: Multithreaded Processors

Traditional Multithreading

Coarse-grain multithreading

• switch on a long-latency operation (e.g., L2 cache miss)

• another thread executes while the miss is handled

• modest increase in instruction throughput

• doesn’t hide latency of short-latency operations

• no switch if no long-latency operations

• need to fill the pipeline on a switch

• potentially no slowdown to the thread with the miss,

if stall is long, pipeline is short & switch back fairly promptly

• Denelcor HEP, IBM RS64 III, IBM Northstar/Pulsar

Spring 2015 8 471: Multithreaded Processors

5/5/2015

5

Traditional Multithreading

Fine-grain multithreading

• can switch to a different thread each cycle (usually round robin)

• hides latencies of all kinds

• larger increase in instruction throughput but slows down the

execution of each thread

• Cray MTA

Spring 2015 9 471: Multithreaded Processors

Simultaneous Multithreading

471: Multithreaded Processors 10

Issue Slots

T
im

e
 (

 p
ro

c
 c

y
c

le
s

)

CMP reduces

horizontal waste

Issue Slots

T
im

e
(

p
ro

c
cy

cl
es

)

FGMT reduces

vertical waste

5/5/2015

6

Simultaneous Multithreading (SMT)

Third style of multithreading, different concept

3. simultaneous multithreading (SMT)

• no hardware context switching

• same-cycle multithreading: can issue multiple instructions

from multiple threads each cycle

• huge boost in instruction throughput with less degradation to

individual threads

• Intel Core i7 (Hyperthreading); IBM Power7, BlueGene/Q

Spring 2015 11 471: Multithreaded Processors

Simultaneous Multithreading

471: Multithreaded Processors 12

Issue Slots

T
im

e
 (

 p
ro

c
 c

y
c

le
s

)

CMP reduces

horizontal waste

Issue Slots

T
im

e
(

p
ro

c
cy

cl
es

)

FGMT reduces

vertical waste

Issue Slots

T
im

e
(

p
ro

c
cy

cl
es

)

SMT reduces

both

5/5/2015

7

Cray (Tera) MTA

Goals

• uniform memory access

• lightweight synchronization

• heterogeneous parallelism

Spring 2015 13 471: Multithreaded Processors

Cray MTA

Fine-grain multithreaded processor

• can switch to a different thread each cycle

• switches to ready threads only

• up to 128 hardware contexts/processor

• lots of latency to hide, mostly from the multi-hop
interconnection network

• average instruction latency for computation: 22 cycles
(i.e., 22 instruction streams needed to keep functional units
busy)

• average instruction latency including memory: 120 to 200-
cycles
(i.e., 120 to 200 instruction streams needed to hide all latency,
on average)

• processor state for all 128 contexts

• GPRs (total of 4K registers!)

• status registers (includes the PC)

• branch target registers

Spring 2015 14 471: Multithreaded Processors

5/5/2015

8

Cray MTA

Interesting features

• No data caches

• increases the maximum latency for data accesses but reduces

the variation between memory ops

• to avoid having to keep caches coherent

• memory-side buffers instead

• L1 & L2 instruction caches

• instructions have more locality & have no coherency problem

• prefetch fall-through & target code

Spring 2015 15 471: Multithreaded Processors

Cray MTA

Interesting features

• no paging

• want pages pinned down in memory for uniform latency

• page size is 256MB

• VLIW instructions

• memory/arithmetic/branch

• load/store architecture

• need a good code scheduler

Spring 2015 16 471: Multithreaded Processors

5/5/2015

9

Cray MTA

Interesting features

• Trade-off between avoiding memory bank conflicts &
exploiting spatial locality for data

• conflicts:

• memory distributed among processing elements (PEs)

• memory addresses are randomized to avoid conflicts

• want to fully utilize all memory bandwidth

• locality:

• run-time system can confine consecutive addresses to a single
(close-by) memory unit

Spring 2015 17 471: Multithreaded Processors

Cray MTA

Interesting features

• tagged memory, i.e., full/empty bits

• indirectly set full/empty bits to prevent data races

• prevents a consumer from loading a value before a
producer has written it

• prevents a producer from overwriting a value before a
consumer has read it

• example for the consumer:

• set to empty when producer instruction starts executing

• consumer instructions block if try to read the producer
value

• set to full when producer writes value

• consumers can now read a valid value

Spring 2015 18 471: Multithreaded Processors

5/5/2015

10

Cray MTA

Interesting features

• tagged memory, i.e., full/empty bits

• explicitly set full/empty bits for cheap thread synchronization

• primarily used accessing shared data

• very fine-grain synchronization (on the level of a data word)

• locking: read memory location & set to empty

• other readers are blocked

• unlocking: write memory location & set to full

Spring 2015 19 471: Multithreaded Processors

SMT: The Executive Summary

Simultaneous multithreaded (SMT) processors combined designs

from:

• traditional multithreaded processors

• multiple per-thread hardware contexts

• out-of-order superscalar processors

• wide instruction issue

• out-of-order execution

• hardware register renaming

471: Multithreaded Processors 7

5/5/2015

11

SMT: The Executive Summary

The combination was a processor with two important capabilities.

1) same-cycle multithreading: issues & executes instructions from

multiple threads each cycle

 => converting thread-level parallelism (TLP) to

 cross-thread instruction-level parallelism (ILP)

471: Multithreaded Processors

21

Functional Units

SMT: The Executive Summary

The combination was a processor with two important capabilities.

2) thread-shared hardware resources, both logic & memories

471: Multithreaded Processors

22

1 2 3 4

Threads

Fetch Logic

Functional Units

Instruction Queue

Spring 2015

5/5/2015

12

Performance Implications

471: Multithreaded Processors 23

2X 4X 3X

SPEC95

SPEC2000

Splash 2

TPC B

TPC D

Apache

OS

Does this Processor Sound Familiar?

Technology transfer =>

• 2-context Intel Pentium 4; Xeon; Core i5, i7; Atom

(Hyperthreading)

• 2-context IBM Power5 & Power6; 4-context IBM Power7 (8 cores)

& BlueGene/Q (16 cores)

• 4-context Compaq 21464

Spring 2015 24 471: Multithreaded Processors

5/5/2015

13

An SMT Architecture

Three primary goals for this architecture:

1. Achieve significant throughput gains with multiple threads

2. Minimize the performance impact on a single thread executing

alone

3. Minimize the microarchitectural impact on a conventional out-of-

order superscalar design

Spring 2015 25 471: Multithreaded Processors

Implementing SMT

Spring 2015 26 471: Multithreaded Processors

5/5/2015

14

Implementing SMT

No special hardware for scheduling instructions from multiple
threads

• use the hardware register renaming & dynamic instruction
scheduling mechanisms as a superscalar

• register renaming hardware eliminates false dependences both
within a thread (just like a superscalar) & also between threads

How it works:

• map thread-specific architectural registers onto a pool of thread-
independent physical registers

• for example: A3 in T1 onto P5; A3 on T2 onto P6

• operands are thereafter called by their physical names

• an instruction is issued when its operands become available & a
functional unit is free

• instruction scheduler not have to consider thread IDs when
dispatching instructions to functional units
(unless threads have different priorities)

Spring 2015 27 471: Multithreaded Processors

From Superscalar to SMT

Extra pipeline stages for accessing thread-shared register files

• 8 hardware contexts * 32 registers + renaming registers

SMT instruction fetcher (ICOUNT chooser)

• fetch from 2 threads each cycle

• count the number of instructions for each thread in the pre-

execution stages

• pick the 2 threads with the lowest number

• in essence fetching from the two highest throughput threads

Spring 2015 28 471: Multithreaded Processors

5/5/2015

15

From Superscalar to SMT

Per-thread hardware

• small stuff

• all part of current out-of-order processors

• none endangered the cycle time

1. other per-thread processor state, e.g.,

• program counters

• return stacks

• thread identifiers, e.g., with BTB entries, TLB entries

2. per-thread bookkeeping for, e.g.,

• instruction queue flush on branch mispredictions

• instruction commit

• trapping

This is why there is only a 15% increase in chip area on a 4 hardware-
context Alpha 21464.

Spring 2015 29 471: Multithreaded Processors

Implementing SMT

Thread-shared hardware:

• branch target buffer

• instruction queues

• functional units

• all caches (physical tags)

• TLBs

• store buffers & MSHRs

Thread-shared hardware is why there is little single-thread performance

degradation (~1.5%).

What hardware might you not want to share?

Spring 2015 30 471: Multithreaded Processors

5/5/2015

16

Implementing SMT

Does thread-shared hardware cause more conflicts?

• 2X more data cache misses

Does it matter?

• threads hide miss latencies for each other

• data sharing

Spring 2015 31 471: Multithreaded Processors

SMT

Interesting features

• thread-blind instruction scheduling

• thread chooser for instruction fetching

• hardware queuing locks for cheap synchronization

• orders of magnitude faster because does not access memory

• can parallelize previously unparallelizable codes

• software-directed register deallocation

• communicate last-use information to HW for early register

deallocation

• now need fewer renaming registers

Spring 2015 32 471: Multithreaded Processors

5/5/2015

17

Spring 2015 471: Multithreaded Processors 33

A Register Renaming Example

Code Segment Register Mapping Comments

ld r7,0(r6) r7 -> p1 p1 is allocated
...

add r8, r9, r7 r8 -> p2 use p1, not r7

...

sub r7, r2, r3 r7 -> p3
p3 is allocated
p1 is deallocated
when sub commits

What does SMT change?

1. Costs of data sharing

CMPs

Threads reside on distinct processors & inter-thread communication

is a big overhead.

Parallelizing compilers attempt to decompose applications to

minimize inter-processor communication.

Disjoint set of data & iterations for each thread

SMT

Threads execute on the same processor with thread-shared

hardware.

Inter-thread communication incurs no overhead.

34 471: Multithreaded Processors Spring 2015

5/5/2015

18

SMT Compiler Strategy

No special SMT-centered compilation is necessary

However, if optimizations focused on data sharing, not data isolation,

might SMT do better?

35 471: Multithreaded Processors Spring 2015

Tiling Example

/* matrix multiple before */

for (i=0; i<n; i=i+1)
 for (j=0; j<n; j=j+1){
 r = 0;
 for (k=0; k<n; k=k+1) {
 r = r + y[i,k] * z[k,j]; }
 x[i,j] = r;
 };

/* matrix multiply after tiling */

for (jj=0; jj<n; jj=jj+T)

for (kk=0; kk<n; kk=kk+T)

 for (i=0; i<n; i=i+1)
 for (j=jj; j<min(jj+T-1,n); j=j+1) {
 r = 0;
 for (k=kk; k<min(kk+T-1,n); k=k+1)
 {r = r + y[i,k] * z[k,j]; }
 x[i,j] = x[i,j] + r;
 };

Spring 2015 36 471: Multithreaded Processors

5/5/2015

19

Tiling

The Normal Way (blocked):

Tiled to exploit data reuse, separate tiles/thread

Often works, except when: large number of threads,

large number of arrays, small data cache

Issue of tile size sweet spot

The SMT-friendly Way (cyclic)

Threads share a tile so there is less pressure on the

data cache

471: Multithreaded Processors

Blocked

1 2 3 1 2 3

3

3

2 4 1

4 1

4

4

2

3

1 2

Cyclic

4 3 1 2

8 7 5 6

9

37 Spring 2015

Tiling

The Normal Way (blocked):

Tiled to exploit data reuse, separate tiles/thread

Often works, except when: large number of threads,

large number of arrays, small data cache

Issue of tile size sweet spot

The SMT-friendly Way (cyclic)

Threads share a tile so there is less pressure on the

data cache

Less sensitive to tile size

• tiles can be large to reduce loop control overhead

• cross-thread latency hiding hides misses

• more adaptable to different cache configurations

471: Multithreaded Processors

Blocked

1 2 3 1 2 3

3

3

2 4 1

4 1

4

4

2

3

1 2

38 Spring 2015

4

4

4

4

Cyclic

1 2

4 3

5/5/2015

20

Multicore vs. Multithreading

If you wanted to execute multiple threads, would you build a:

• Multicore with multiple, simple pipelines?

• SMT with a single, higher performance pipeline?

• Both together?

Spring 2015 39 471: Multithreaded Processors

Multicore vs. Multithreading

If you wanted to execute multiple threads, would you build a:

• Multicore with multiple, separate pipelines?

• simple, easy to design, build, test

• probably faster clock

• power? turn off unused cores

• SMT with a single, larger pipeline?

• better performance from same-cycle multithreading

• better power/performance ratio

• Both together?

Intel Nehalem (Core-i7): up to 8 cores, 16 SMT threads

4-context IBM Power7 (8 cores)

Spring 2015 40 471: Multithreaded Processors

5/5/2015

21

Important Issues

Multithreaded processors

• what are they?

• what problem do they solve?

• hardware support

• 5th through-put vs. latency trade-off

Coarse-grain vs. fine-grain vs. simultaneous multithreading

Spring 2015 41 471: Multithreaded Processors

Important Issues

Cray

• what are its goals & how are they met?

• full-empty bits vs. locks vs. transactional memory

SMT

• what are its goals & how are they met?

• what extra hardware is needed, what extra hardware is not

needed?

• how does it do synchronization? fetch instructions? schedule

instructions?

Matching hardware & compiler optimizations

Spring 2015 42 471: Multithreaded Processors

