
1

Spring 2015 CSE 471: Review of Pipelines 1

Instruction-Level Parallelism (ILP)

Fine-grained parallelism

Obtained by:

• instruction overlap in a pipeline

• executing instructions in parallel (later, with multiple instruction

issue)

In contrast to:

• loop-level parallelism (medium-grained)

• thread-level or task-level or process-level parallelism (coarse-

grained)

Spring 2015 CSE 471: Review of Pipelines 2

Instruction-Level Parallelism (ILP)

Can be exploited when instructions are independent of one another

• two instructions are independent if their operands are different

• an example of independent instructions

ld R1, 0(R2)

or R7, R3, R8

2

Spring 2015 CSE 471: Review of Pipelines 3

Dependences

data dependence: arises from the flow of values through programs

• consumer instruction gets a value from a producer instruction

• determines the order in which instructions can be executed

name dependence: instructions use the same register but no flow of data

between them

• anti-dependence

• output dependence

ld R1, 32(R3)

add R3, R1, R8

ld R1, 32(R3)

add R3, R1, R8

 ld R1, 16(R3)

Spring 2015 CSE 471: Review of Pipelines 4

Dependences

control dependence

• arises from the flow of control

• instructions after a branch depend on the value of the branch’s

condition variable

beqz R2, target

ld r1, 0(r3)

target:

add r1, ...

3

Spring 2015 CSE 471: Review of Pipelines 5

Instruction-Level Parallelism (ILP)

ILP is important for executing instructions in parallel and hiding latencies

• each thread (program) has very little ILP

• dependences inhibit ILP

• tons of techniques to increase it

Spring 2015 CSE 471: Review of Pipelines 6

Pipelining

Implementation technique (but it is considered part of the architecture)

• overlaps execution of different instructions

• execute all steps in the execution cycle simultaneously, but on

different instructions

Exploits ILP by executing several instructions “in parallel”

Goal is to increase instruction throughput

4

Spring 2015 CSE 471: Review of Pipelines 7

Pipelining

Spring 2015 CSE 471: Review of Pipelines 8

Pipelining

Not that simple!

• pipeline hazards (structural, data, control)

• place a “soft limit” on the number of stages

• increase instruction latency (a little)

• write & read pipeline registers for data that is computed in a

stage

• all stages are the same length which is determined by the

longest stage

• stage length determines clock cycle time

• time for clock & control lines to reach all stages

IBM Stretch (1961): the first general-purpose pipelined computer

5

Spring 2015 CSE 471: Review of Pipelines 9

Structural Hazards

Cause: instructions in different stages want to use the same resource in

the same cycle

e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:

• more hardware (eliminate the hazard)

• stall (so still execute correct programs)

• less hardware, lower cost

• only for big hardware components

Spring 2015 CSE 471: Review of Pipelines 10

6

Spring 2015 CSE 471: Review of Pipelines 11

Data Hazards

Cause:

• an instruction early in the pipeline needs the result produced by an

instruction farther down the pipeline before it is written to a register

• would not have occurred if the implementation was not pipelined

Types

RAW (data), WAR (name: anti-dependence), WAW (name: output)

Note: dependences are a function of the code; whether they result in a

hazard is a function of the pipeline design.

HW solutions

• forwarding hardware (eliminate the hazard)

• stall via pipelined interlocks if can’t forward

Compiler solution

• code scheduling (for loads)

Spring 2015 CSE 471: Review of Pipelines 12

Dependences vs. Hazards

7

Spring 2015 CSE 471: Review of Pipelines 13

Forwarding Example

Spring 2015 CSE 471: Review of Pipelines 14

Forwarding

Forwarding (also called bypassing):

• output of one stage (the result in that stage’s pipeline register) is

bused (bypassed) to the input of a previous stage

• why forwarding is possible

• results are computed 1 or more stages before they are written

to a register

• at the end of the EX stage for computational instructions

• at the end of MEM for a load

• results are used 1 or more stages after registers are read

• if you forward a result to an ALU input as soon as it has been

computed, you can eliminate the hazard or reduce stalling

8

Spring 2015 CSE 471: Review of Pipelines 15

Forwarding Implementation

Forwarding unit checks to see if values can be forwarded:

• between instructions in ID and EX

• compare the R-type destination register number in EX/MEM

pipeline register to each source register number in ID/EX

• between instructions in ID and MEM

• compare the R-type destination register number in MEM/WB

to each source register number in ID/EX

If a match, then forward the appropriate result values to an ALU source

• bus a value from EX/MEM or MEM/WB to an ALU source

Spring 2015 CSE 471: Review of Pipelines 16

9

Spring 2015 CSE 471: Review of Pipelines 17

Forwarding Hardware

Hardware to implement forwarding:

• destination register number in pipeline registers

(but need it anyway because we need to know which register to

write when storing an ALU or load result)

• source register numbers

(probably only one, e.g., rs on MIPS R2/3000) is extra)

• a comparator for each source-destination register pair

• buses to ship data - the BIG cost

• buses to ship register numbers

• larger ALU MUXes for 2 bypass values

Spring 2015 CSE 471: Review of Pipelines 18

Loads

Loads

• data hazard caused by a load instruction & an immediate use of the

loaded value

• forwarding won’t eliminate the hazard -- why?

• 2 solutions used together

• stall via pipelined interlocks

• compiler schedules independent instructions into the load

delay slot

(This is a reason that pipelines are part of the architecture:

the pipeline structure is exposed to the compiler.)

10

Spring 2015 CSE 471: Review of Pipelines 19

Loads

Spring 2015 CSE 471: Review of Pipelines 20

Implementing Pipelined Interlocks

Detecting a stall situation

Hazard detection unit stalls the use after a load

• is the instruction in EX a load?

• does the destination register number of the load = either source

register number in the next instruction?

• compare the load write register number in ID/EX to each read

register number in IF/ID

 if yes, stall the pipe 1 cycle

11

Spring 2015 CSE 471: Review of Pipelines 21

Implementing Pipelined Interlocks

How stalling is implemented:

• nullify the instruction in the ID stage, the one that consumes the
loaded value

• change EX, MEM, WB control signals in ID/EX pipeline register
to 0

• the instruction in the ID stage will have no side effects as it
passes down the pipeline

• repeat the instructions in ID & IF stages

• disable writing the IF/ID pipeline register - the load consumer
instruction will be decoded & its registers read again

• disable writing the PC - the same instruction will be fetched
again

Spring 2015 CSE 471: Review of Pipelines 22

Loads

hazard detection

fetch again

decode again

12

Spring 2015 CSE 471: Review of Pipelines 23

Implementing Pipelined Interlocks

Hardware to implement stalling:

• rt register number in ID/EX pipeline register

(but need it anyway because we need to know what register to

write when storing load data)

• both source register numbers in IF/ID pipeline register

(already there)

• a comparator for each source-destination register pair

• buses to ship register numbers

• write enable/disable for PC

• write enable/disable for the IF/ID pipeline register

• a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway

Spring 2015 CSE 471: Review of Pipelines 24

Control Hazards

Cause: condition & target determined after next fetch

Early HW solutions

• stall

• fetch the next instruction & flush the pipeline if wrong

• move branch resolution hardware forward in the pipeline (detect a

problem earlier)

Compiler solutions

• code scheduling

• static branch prediction

Today’s HW solutions

• dynamic branch prediction

