
1 

Spring 2015 CSE 471:  Review of Pipelines 1 

Instruction-Level Parallelism (ILP) 

Fine-grained parallelism 

Obtained by: 

• instruction overlap in a pipeline 

• executing instructions in parallel (later, with multiple instruction 

issue) 

In contrast to: 

• loop-level parallelism (medium-grained) 

• thread-level or task-level or process-level parallelism  (coarse-

grained) 
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Instruction-Level Parallelism (ILP) 

Can be exploited when instructions are independent of one another 

• two instructions are independent if their operands are different 

• an example of independent instructions 

 

 

 

 

 

ld R1, 0(R2) 

or R7, R3, R8 
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Dependences 

data dependence: arises from the flow of values through programs 

• consumer instruction gets a value from a producer instruction 

• determines the order in which instructions can be executed 

 

 

 

 

name dependence: instructions use the same register but no flow of data 

between them 

• anti-dependence  

• output dependence 

 

ld R1, 32(R3) 

add R3, R1, R8 

 

ld R1, 32(R3) 

add R3, R1, R8 

 ld R1, 16(R3) 
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Dependences 

control dependence 

• arises from the flow of control 

• instructions after a branch depend on the value of the branch’s 

condition variable 

 

 

 

 

 

 

 

  
  

 

beqz R2, target 
  

 
ld r1, 0(r3) 

target: 

 

add r1, ... 
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Instruction-Level Parallelism (ILP) 

ILP is important for executing instructions in parallel and hiding latencies 

• each thread (program) has very little ILP 

• dependences inhibit ILP 

• tons of techniques to increase it 
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Pipelining 

Implementation technique (but it is considered part of the architecture) 

• overlaps execution of different instructions 

• execute all steps in the execution cycle simultaneously, but on 

different instructions 

Exploits ILP by executing several instructions “in parallel” 

Goal is to increase instruction throughput  
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Pipelining 
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Pipelining 

Not that simple! 

• pipeline hazards (structural, data, control) 

• place a “soft limit” on the number of stages 

• increase instruction latency (a little) 

• write & read pipeline registers for data that is computed in a 

stage 

• all stages are the same length which is determined by the 

longest stage 

• stage length determines clock cycle time 

• time for clock & control lines to reach all stages 

 

IBM Stretch (1961): the first general-purpose pipelined computer 
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Structural Hazards 

Cause: instructions in different stages want to use the same resource in 

the same cycle 

e.g., 4 FP instructions ready to execute & only 2 FP units 

Solutions: 

• more hardware (eliminate the hazard) 

• stall (so still execute correct programs) 

• less hardware, lower cost 

• only for big hardware components 
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Data Hazards 

Cause: 

• an instruction early in the pipeline needs the result produced by an 

instruction farther down the pipeline before it is written to a register 

• would not have occurred if the implementation was not pipelined 

Types 

RAW (data), WAR (name: anti-dependence), WAW (name: output) 

Note: dependences are a function of the code; whether they result in a 

hazard is a function of the pipeline design. 

HW solutions 

• forwarding hardware (eliminate the hazard) 

• stall via pipelined interlocks if can’t forward 

Compiler solution 

• code scheduling (for loads) 
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Dependences vs. Hazards 
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Forwarding Example 

Spring 2015 CSE 471:  Review of Pipelines 14 

Forwarding 

Forwarding (also called bypassing): 

• output of one stage (the result in that stage’s pipeline register) is 

bused (bypassed) to the input of a previous stage 

• why forwarding is possible 

• results are computed 1 or more stages before they are written 

to a register 

• at the end of the EX stage for computational instructions 

• at the end of MEM for a load 

• results are used 1 or more stages after registers are read 

• if you forward a result to an ALU input as soon as it has been 

computed, you can eliminate the hazard or reduce stalling 
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Forwarding Implementation 

Forwarding unit checks to see if values can be forwarded: 

• between instructions in ID and EX 

• compare the R-type destination register number in EX/MEM 

pipeline register to each source register number in ID/EX 

• between instructions in ID and MEM 

• compare the R-type destination register number in MEM/WB 

to each source register number in ID/EX 

If a match, then forward the appropriate result values to an ALU source 

• bus a value from EX/MEM or MEM/WB to an ALU source 
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Forwarding Hardware 

Hardware to implement forwarding: 

• destination register number in pipeline registers 

(but need it anyway because we need to know which register to 

write when storing an ALU or load result) 

• source register numbers 

(probably only one, e.g., rs on MIPS R2/3000) is extra) 

• a comparator for each source-destination register pair 

• buses to ship data - the BIG cost 

• buses to ship register numbers 

• larger ALU MUXes for 2 bypass values 
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Loads 

Loads 

• data hazard caused by a load instruction & an immediate use of the 

loaded value 

• forwarding won’t eliminate the hazard -- why? 

 

• 2 solutions used together 

• stall via pipelined interlocks 

• compiler schedules independent instructions into the load 

delay slot 

(This is a reason that pipelines are part of the architecture: 

the pipeline structure is exposed to the compiler.) 
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Loads 
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Implementing Pipelined Interlocks 

Detecting a stall situation 

Hazard detection unit stalls the use after a load 

• is the instruction in EX a load? 

• does the destination register number of the load = either source 

register number in the next instruction? 

• compare the load write register number in ID/EX to each read 

register number in IF/ID 

 if yes, stall the pipe 1 cycle 
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Implementing Pipelined Interlocks 

How stalling is implemented: 

• nullify the instruction in the ID stage, the one that consumes the 
loaded value 

• change EX, MEM, WB control signals in ID/EX pipeline register 
to 0 

• the instruction in the ID stage will have no side effects as it 
passes down the pipeline 

• repeat the instructions in ID & IF stages 

• disable writing the IF/ID pipeline register - the load consumer 
instruction will be decoded & its registers read again 

• disable writing the PC - the same instruction will be fetched 
again 
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Loads 

hazard detection 

fetch again 

decode again 
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Implementing Pipelined Interlocks 

Hardware to implement stalling: 

• rt register number in ID/EX pipeline register 

(but need it anyway because we need to know what register to 

write when storing load data) 

• both source register numbers in IF/ID pipeline register 

(already there) 

• a comparator for each source-destination register pair 

• buses to ship register numbers 

• write enable/disable for PC 

• write enable/disable for the IF/ID pipeline register 

• a MUX to the ID/EX pipeline register (+ 0s) 

Trivial amount of hardware & needed for cache misses anyway 
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Control Hazards 

Cause: condition & target determined after next fetch 

Early HW solutions 

• stall 

• fetch the next instruction & flush the pipeline if wrong 

• move branch resolution hardware forward in the pipeline (detect a 

problem earlier) 

Compiler solutions 

• code scheduling 

• static branch prediction 

Today’s HW solutions 

• dynamic branch prediction 

 


