Instruction-Level Parallelism (ILP)

Fine-grained parallelism
Obtained by:
* instruction overlap in a pipeline

+ executing instructions in parallel (later, with multiple instruction
issue)

In contrast to:
+ loop-level parallelism (medium-grained)

» thread-level or task-level or process-level parallelism (coarse-
grained)

Spring 2015 CSE 471: Review of Pipelines

Instruction-Level Parallelism (ILP)

Can be exploited when instructions are independent of one another
* two instructions are independent if their operands are different
» an example of independent instructions
1d R1, 0(R2)
or R7, R3, R8

Spring 2015 CSE 471: Review of Pipelines

Dependences

data dependence: arises from the flow of values through programs
« consumer instruction gets a value from a producer instruction
+ determines the order in which instructions can be executed

1d R1, 32(R3)
add R3, R1, R8

name dependence: instructions use the same register but no flow of data
between them

1d , 32(R3)
add , R1, R8
1d , 16(R3)

Spring 2015 CSE 471: Review of Pipelines

Dependences

control dependence
+ arises from the flow of control

 instructions after a branch depend on the value of the branch’s
condition variable

begz R2, target
1d rl, 0(x3)
target: add rl,

Spring 2015 CSE 471: Review of Pipelines

Instruction-Level Parallelism (ILP)

ILP is important for executing instructions in parallel and hiding latencies
» each thread (program) has very little ILP
» dependences inhibit ILP
+ tons of techniques to increase it

Spring 2015 CSE 471: Review of Pipelines

Pipelining

Implementation technique (but it is considered part of the architecture)
» overlaps execution of different instructions

+ execute all steps in the execution cycle simultaneously, but on
different instructions

Exploits ILP by executing several instructions “in parallel”
Goal is to increase instruction throughput

_ Twithout pipe _ ixn

Tw'impipe i+n-1

= # of pipe stages

Spring 2015 CSE 471: Review of Pipelines

Pipelining

|fetch Id&ll ex |mem |wb

fetch |d&r| ex |mem |wb|

it H1 B2 3 4 145 6 1+7 @8 3

lfetch]: Haa mem pwky
B ex [memlwbii

iHad ex |mem

fetch|:iHed ex b
fetch | Hed ex Jmempwh}

fetch|i mem fwbf:
fillthe pipeline ex |mem bl
fetchiHed ex Jmemfwbi:
Spring 2015

Pipelining

Not that simple!

+ pipeline hazards (structural, data, control)
* place a “soft limit” on the number of stages
+ increase instruction latency (a little)

+ write & read pipeline registers for data that is computed in a
stage

+ all stages are the same length which is determined by the
longest stage

+ stage length determines clock cycle time
« time for clock & control lines to reach all stages

IBM Stretch (1961): the first general-purpose pipelined computer

Spring 2015 CSE 471: Review of Pipelines

Structural Hazards

Cause: instructions in different stages want to use the same resource in
the same cycle
e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:
» more hardware (eliminate the hazard)
« stall (so still execute correct programs)
* less hardware, lower cost
+ only for big hardware components

Spring 2015 CSE 471: Review of Pipelines 9

Spring 2015 CSE 471: Review of Pipelines 10

Data Hazards

Cause:

» aninstruction early in the pipeline needs the result produced by an
instruction farther down the pipeline before it is written to a register

» would not have occurred if the implementation was not pipelined
Types
RAW (data), WAR (name: anti-dependence), WAW (name: output)

Note: dependences are a function of the code; whether they result in a
hazard is a function of the pipeline design.

HW solutions
+ forwarding hardware (eliminate the hazard)
« stall via pipelined interlocks if can’t forward
Compiler solution
+ code scheduling (for loads)

Spring 2015 CSE 471: Review of Pipelines 11

Dependences vs. Hazards

data dependence
sub$2,$1,%3 data hazard

:

and %12, $2,$5
F{ % _]—{D
or$13,%6.52 M

% Ejﬁ HiO

add$14, %2, $2 M

|

sw $15, 100 ($2) M

Spring 2015 L 12

AN

Forwarding Example

%7 is computed here

add$7.%12, $15 \
|:| H L
%7 is read here

sub $8, $7, $12 H \‘[
and$9, $13, §7 |:

i)

Spring 201 13

'/$7 is written here

%7 is needed here

1O

/ $7 isneeded here

el

$7is read here

34

Y

Forwarding

Forwarding (also called bypassing):

» output of one stage (the result in that stage’s pipeline register) is
bused (bypassed) to the input of a previous stage

+ why forwarding is possible

* results are computed 1 or more stages before they are written
to a register

+ at the end of the EX stage for computational instructions
+ at the end of MEM for a load
* results are used 1 or more stages after registers are read

+ if you forward a result to an ALU input as soon as it has been
computed, you can eliminate the hazard or reduce stalling

Spring 2015 CSE 471: Review of Pipelines 14

Forwarding Implementation

Forwarding unit checks to see if values can be forwarded:
* between instructions in ID and EX

« compare the R-type destination register number in EX/MEM
pipeline register to each source register number in ID/EX

* between instructions in ID and MEM

« compare the R-type destination register number in MEM/WB
to each source register number in ID/EX

If a match, then forward the appropriate result values to an ALU source

* bus a value from EX/MEM or to an ALU source
Spring 2015 CSE 471: Review of Pipelines 15
1D/EX EX/MEM MEM/WB

Registers

ALU =

Data
memory

ForwardB |
R M
Rd u EX/MEM.RegislerRd
= J W A_I
Forwarding "
warding |

7

ﬂ

MEM/WB.RegisterRd

unit Ly

h. Wilh torwarding

Spring 2015 CSE 471: Review of Pipelines 16

Forwarding Hardware

Hardware to implement forwarding:

+ destination register number in pipeline registers
(but need it anyway because we need to know which register to
write when storing an ALU or load result)

* source register numbers
(probably only one, e.g., rs on MIPS R2/3000) is extra)

» acomparator for each source-destination register pair
* buses to ship data — the BIG cost

* buses to ship register numbers

+ larger ALU MUXes for 2 bypass values

Spring 2015 CSE 471: Review of Pipelines 17

Loads

Loads

« data hazard caused by a load instruction & an immediate use of the
loaded value

+ forwarding won’t eliminate the hazard -- why?

» 2 solutions used together
« stall via pipelined interlocks

» compiler schedules independent instructions into the load
delay slot
(This is a reason that pipelines are part of the architecture:
the pipeline structure is exposed to the compiler.)

Spring 2015 CSE 471: Review of Pipelines 18

Loads

data dependence
v %2, 20(%1) $2is available here

ﬁmm
] L ¥ -—_ $2is written here

e]

Spring 2015 CSE 471: Review of Pipelines

19

Implementing Pipelined Interlocks

Detecting a stall situation
Hazard detection unit stalls the use after a load
* is the instruction in EX a load?

» does the destination register number of the load = either source
register number in the next instruction?

« compare the load write register number in ID/EX to each read
register number in IF/ID

if yes, stall the pipe 1 cycle

Spring 2015 CSE 471: Review of Pipelines

20

10

Implementing Pipelined Interlocks

How stalling is implemented:
, the one that consumes the
loaded value
» change EX, MEM, WB control signals in ID/EX pipeline register
to0
+ the instruction in the ID stage will have no side effects as it
passes down the pipeline

« disable writing the IF/ID pipeline register — the load consumer
instruction will be decoded & its registers read again

+ disable writing the PC — the same instruction will be fetched
again

Spring 2015 CSE 471: Review of Pipelines 21

Loads

data dependence

hazard detection
Iw $2. 20($1) J

and 34, $2,. 35 |:| D
o«

or %8, $2,. %6
/] |

the bubble

add $9. $4. $2 _
CHEoe EME

Spring 2015 CSE 471: Review of Pipelines 22

11

Implementing Pipelined Interlocks

Hardware to implement stalling:

rt register number in ID/EX pipeline register
(but need it anyway because we need to know what register to
write when storing load data)

both source register numbers in IF/ID pipeline register
(already there)

a comparator for each source-destination register pair
buses to ship register numbers

write enable/disable for PC

write enable/disable for the IF/ID pipeline register

a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway

Spring 2015 CSE 471: Review of Pipelines 23

Control Hazards

Cause: condition & target determined after next fetch

Early HW solutions

stall
fetch the next instruction & flush the pipeline if wrong

move branch resolution hardware forward in the pipeline (detect a
problem earlier)

Compiler solutions

code scheduling
static branch prediction

Today’s HW solutions

dynamic branch prediction

Spring 2015 CSE 471: Review of Pipelines 24

12

