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Cache Basics

= Why do caches work?
= Locality
* (S, E, B, m)
= S = Sets
= E = Associativity (\Ways)
= B = Block Size (Line size)
= m address bits
= Cache Equation
=C=SxExB
= See CS:APP §6.4 (CSE 351) for a full refresher




Figure 6.27

General organization
of cache (S. E. B, m).
(a) A cache is an
array of sets. Each

set contains one or
more lines. Each line
contains a valid bit,
some tag bits, and a
block of data. (b) The
cache organization
induces a partition of
the m address bits into
t tag bits, s set index
bits, and b block offset
bits.
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Victim Cache/Buffer

= What happens to evicted cache lines?
= |f dirty, write back to lower level cache

= Overwrite

= But, what if we want to access a just evicted line?
= Fetch from lower level cache....
= Or, just cache the cache!

= Victim Cache: small fully associative cache, between L1 and
L2 (lower level memory)
= On L1 miss, check Victim Cache
= |f line found, swap L1 line and Victim line




Homework #2 — Mystery Caches

= Goal: discover cache parameters
= MAX_* variables: hard maximums on different cache parameters

= Python
= Basically pseudo-code that executes
= Google / Stack Overflow are your friends
= Files
= caches.py: defines a cache using LRU — don’t modify

= discover_cache params.py: defines discovery routines — modify!
= Should be self-explanatory, fill-in the # todo’s




Partners

= You must work in pairs for this assignment (one solo)
= Everyone must fill out catalyst survey entering your partner’s

name! (solo, enter your own name)




