Caches

CSE 471 Spring 2015
Mark Wyse
April 16, 2015

Cache Basics

= Why do caches work?
= Locality
* (S, E, B, m)
= S = Sets
= E = Associativity (\Ways)
= B = Block Size (Line size)
= m address bits
= Cache Equation
=C=SxExB
= See CS:APP §6.4 (CSE 351) for a full refresher

Figure 6.27

General organization
of cache (S. E. B, m).
(a) A cache is an
array of sets. Each

set contains one or
more lines. Each line
contains a valid bit,
some tag bits, and a
block of data. (b) The
cache organization
induces a partition of
the m address bits into
t tag bits, s set index
bits, and b block offset
bits.

5= 2sels <

1 valid bit ftag bits
per line

B = 2° pytes

perline nar cache block

——

|B-1]

Valid| | Tag |[O0 |1] ---

Mo 1]

[valid| | Tag |B—1|

|Valid| | Tag . |B—1]

| Lo]
| [o]

[Valid| | Tag - |B—1]

|Valid| | Tag [B—1|

I

[Valid] | Tag [0 f1]--

|51

Cache size: C= B x E x Sdata bytes
(a)

5 bits b bits

At "

Tag

W R

Set index Block offset

(b)

E lines per set

Victim Cache/Buffer

= What happens to evicted cache lines?
= |f dirty, write back to lower level cache

= Overwrite

= But, what if we want to access a just evicted line?
= Fetch from lower level cache....
= Or, just cache the cache!

= Victim Cache: small fully associative cache, between L1 and
L2 (lower level memory)
= On L1 miss, check Victim Cache
= |f line found, swap L1 line and Victim line

Homework #2 — Mystery Caches

= Goal: discover cache parameters
= MAX_* variables: hard maximums on different cache parameters

= Python
= Basically pseudo-code that executes
= Google / Stack Overflow are your friends
= Files
= caches.py: defines a cache using LRU — don’t modify

= discover_cache params.py: defines discovery routines — modify!
= Should be self-explanatory, fill-in the # todo’s

Partners

= You must work in pairs for this assignment (one solo)
= Everyone must fill out catalyst survey entering your partner’s

name! (solo, enter your own name)

