Cache Coherence

CSE 471 Spring 2015
Mark Wyse
May 7, 2015

Parallelism

= [LP — Instruction
= |nstructions with no dependency can be executed in parallel

= DLP — Data
= Same operation on multiple pieces of data
= TLP — Thread

= Multiple instruction streams simultaneously (with or without
communication)

= RLP — Request
= Warehouse Scale Computers, Data Centers

Multiprocessors

= Single core performance limited, diminishing ILP, growing
energy/power concerns

= Billions of transistors, what to do?
= Symmetric, Shared-Memory Multiprocessors (SMP)
= Small number of cores, UMA
= Distributed, Shared-Memory Multiprocessors (DSM)
= Large number of processors (each possibly SMP), NUMA
= Shared Address Space
= Cores communicate through memory operations

Cache Coherence

= Private and Shared Data
= Cache holds copy of data, used privately by a core or shared my

many readers

= Cache Coherence Problem: if core X writes address A, then
core Y reads address A, what value does it read?

= Assuming A was cached locally by both X and Y

A Definition of Coherence

1.

A read by P to location X following write by P to X, with no
writes to X by another processor between always returns

the value written to X by P

A read by P to location X following write by another
processor to X returns value written by other processor
given sufficient time and no other writes to X between

Writes to same location are serialized, that is two writes to
the same location are seen in the same order by all
Processors.

A Definition of Coherence

1. Program Order
2. Coherent View of Memory

3. Write Serialization

Coherence Protocols

= Hardware (usually) protocol to maintain coherent view of
memory between processors

= Software Coherence: IBM Cell (Sony PS3)
= Track state at Cache Block granularity
= Snooping (Bus) vs. Directory (Multi-path interconnect)

= Write Invalidate
= On write, all other copies are invalidated
= Coherence Miss

= 3, 4, 5 state protocols

MSI Protocol

= Modified (Exclusive), Shared, Invalid Protocol
= Modified/Exclusive is a dirty state

= Shared is clean

CPU read hit

Shared

CPU read (read only)

Place read miss on bus

CPU write

Place read
miss on bus

Place write
miss on bus

Cache state transitions

Exclusive based on requests from CPU
(read/write)

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit

=
¥

Write-back block
abort memory
access

Write miss
for this block

Exclusive
(read/write)

Write miss for this block

Invalidate for
this block Shated

(read only)

Read miss

for this block Cache state transitions based
on requests from the bus

MESI Protocol

= Modified, Exclusive, Shared, Invalid
= Exclusive State

= New from MSI
= Clean, data in one cache

= What transitions does this eliminate?
= What transitions does this add/duplicate?

