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Parallelism

= [LP — Instruction
= |nstructions with no dependency can be executed in parallel

= DLP — Data
= Same operation on multiple pieces of data
= TLP — Thread

= Multiple instruction streams simultaneously (with or without
communication)

= RLP — Request
= Warehouse Scale Computers, Data Centers




Multiprocessors

= Single core performance limited, diminishing ILP, growing
energy/power concerns

= Billions of transistors, what to do?
= Symmetric, Shared-Memory Multiprocessors (SMP)
= Small number of cores, UMA
= Distributed, Shared-Memory Multiprocessors (DSM)
= Large number of processors (each possibly SMP), NUMA
= Shared Address Space
= Cores communicate through memory operations




Cache Coherence

= Private and Shared Data
= Cache holds copy of data, used privately by a core or shared my

many readers

= Cache Coherence Problem: if core X writes address A, then
core Y reads address A, what value does it read?

= Assuming A was cached locally by both X and Y




A Definition of Coherence

1.

A read by P to location X following write by P to X, with no
writes to X by another processor between always returns

the value written to X by P

A read by P to location X following write by another
processor to X returns value written by other processor
given sufficient time and no other writes to X between

Writes to same location are serialized, that is two writes to
the same location are seen in the same order by all
Processors.




A Definition of Coherence

1. Program Order
2. Coherent View of Memory

3.  Write Serialization




Coherence Protocols

= Hardware (usually) protocol to maintain coherent view of
memory between processors

= Software Coherence: IBM Cell (Sony PS3)
= Track state at Cache Block granularity
= Snooping (Bus) vs. Directory (Multi-path interconnect)

= Write Invalidate
= On write, all other copies are invalidated
= Coherence Miss

= 3, 4, 5 state protocols




MSI Protocol

= Modified (Exclusive), Shared, Invalid Protocol
= Modified/Exclusive is a dirty state

= Shared is clean
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MESI Protocol

= Modified, Exclusive, Shared, Invalid
= Exclusive State

= New from MSI
= Clean, data in one cache

= What transitions does this eliminate?
= What transitions does this add/duplicate?




