
GPUs &
Technical Writing
CSE 471 Spring 2015

Mark Wyse

May 28, 2015



Technical Writing
 Disclaimer: I’m not a technical writing expert

 Planning – outline your paper, understand the purpose

 Clarity – don’t hide the message

 Brevity – be concise and efficient with words

 Revise & Edit

 Read your paper before submission!



Graphics Processing Unit (GPU)
 Parallelism

 Execution Model

 Modern GPU Microarchitecture



GPU Overview
 Originally fixed-function processors for 2D/3D graphics

 Increasing Programmability (1990s-2006)

 Pixel shader, vertex shader, transform & lighting

 GPGPU: General Purpose Computing on GPU

 Top 500 supercomputers…



GPU Parallelism
 Focus on Data Parallelism

 Identical, Independent, Streaming computations

 Approaches to Data Parallelism

 MIMD – high overhead, good for general purpose

 SIMD – reduces overhead, but resource contention is an issue

 SIMT – reduces overhead, reduces resource contention



Execution Model
 Single Instruction, Multiple Thread (SIMT)

 Identical, Independent work over multiple lockstep threads

 A GPU “core” has many SIMT “threads”

 Groups are exposed to programmers

 Each thread knows its location in N (<= 3) dimensional space

 Efficient Gather/Scatter operations

 Highly parallel

 In summary: multicore, multithreaded SIMT



GPU Microarchitecture (GCN)
 Lane = executes a single thread

 Executes work-items

 SIMT unit = executes Lanes in lockstep
 16 Lanes per SIMT in GCN

 Runs Wavefronts (64 work-items, 4 cycles)

 64 KB register state (compared to ~1KB on x86 CPU)

 GPU Core = group of SIMT units
 4 SIMT units per Core in GCN

 10 active Wavefronts per SIMT unit

 2560 active work-items per Core

 GPU Chip = collection of GPU Cores



GPUs & Memory
 Thousands of threads

 Radeon R9 290X = 44 GPU Cores * 2560 work-items/core

 = 112,640 active work-items (threads)!!!

 Use TLP to hide memory latency

 Streaming memory access

 Many threads, different access patterns & requirements than 
CPU – caches?



GPU Caches
 Similar L1 capacity per GCN Core as x86 processor…

 But, many thousands (instead of 1 or 2) threads!

 Objective: maximize throughput
 Not to hide latency

 No temporal locality; spatial locality barely exists

 L1: coalesce requests to same block by different work-items
 i.e., streaming thread locality

 Keep around long enough for a single hit

 Reduce bandwidth to DRAM

 L2: DRAM staging buffer
 Tolerate spikes in DRAM bandwidth


