
Final Review
CSE 471 Spring 2015

Mark Wyse

June 04, 2015



Lecture Critique
 Don’t forget!

 1 page, summarize important points + your thoughts

 Exhibit good writing skills



Topics
 Multiprocessors

 Cache Coherence

 Synchronization

 MP Big Issues

 Multithreading

 Dataflow & Wavescalar

 GPUs



Multiprocessors
 Motivation:

 Lots of transistors

 Scaling (Moore and Denard) starting to fall over

 Workload opportunities: scientific, server, media

 Two key types:

 Bus based (low-end)

 Simpler, physically centralized memory, UMA

 Multiple-path interconnect (high-end)

 Complex, scalable, physically distributed memory, NUMA



Cache Coherence
 Cache Coherence Problem: if core X writes address A, then 

core Y reads address A, what value does it read?

 Assuming A was cached locally by both X and Y



A Definition of Coherence
1. Program Order

2. Coherent View of Memory

3. Write Serialization



Coherence
 Protocols

 MSI

 MESI

 Bus-based (snooping) vs Directory

 Differences

 Pros and cons (performance, scalability, etc.)

 Hardware support required



Synchronization
 Coherency protocols do not regulate access to shared data
 Critical sections

 Mutual exclusion between threads

 Barriers
 Point in execution which all threads must reach before any can 

proceed

 Locking
 Atomic read-modify-write
 Load-locked & Store Conditional

 Synchronization APIs
 Spin locks
 Blocking locks
 Queueing locks



MP Big Issues
 Programming model for interprocessor communication

 Shared Memory

 Message Passing

 Execution Model

 Control parallel

 Data parallel

 Dataflow

 Expressing error-free parallelism (hard)

 How do we guarantee/maintain correctness of parallelism?



Multithreading
 Execute multiple threads on the same processor without context 

switches
 Hardware contexts!

 Motivation:
 Performance
 Instruction throughput not scaling with issue width

 Coarse-grain MT
 Switch on long latency operations

 Fine-grain MT
 Can switch to different thread each cycle
 Cray (Tera) MTA

 Simultaneous Multithreading (SMT)
 CMP reduces horizontal waste; FGMT reduces vertical waste
 Same cycle multithreading



Cray (Tera) MTA
 Goals

 UMA, lightweight synchronization, heterogeneous parallelism

 Interesting Features
 FGMT: different thread each cycle, round-robin; processor state 

for 128 hardware contexts!

 No data caches

 No paging

 VLIW instructions

 Tagged memory

 Trade-off between avoiding memory bank conflicts & exploiting 
spatial locality for data



SMT
 Same cycle multithreading

 Convert TLP to ILP

 Thread-shared hardware resources

 Goals:
 Throughput gains for multiple threads

 Minimize single thread performance

 Minimize microarchitectural impact on conventional OoO
superscalar design

 Duplicate hardware

 No special hardware for scheduling from multiple threads!

 Comparison to CMP (pros and cons of each)



Dataflow
 Von Neumann vs. Dataflow Execution Models
 Dataflow:

 No PC
 No Register File
 Parallel execution only hindered by data dependencies
 Exploit ILP on a massive scale

 Dataflow Firing Rule: execute when operands arrived on all 
input arcs, place computed value on output arc.

 Steer and Merge operations
 Problems:

 Memory ordering
 Language compatibility
 Scalability (token store and wires)



Wavescalar
 Solves dataflow issues:

 Language compatibility & memory ordering

 scalability

 Waves

 loop free sections of dataflow graph

 Wave number

 Memory ordering

 Wave numbers

 Sequence numbers within a wave

 Hierarchical microarchitecture



GPUs
 Data parallelism

 Identical, Independent, Streaming computations

 SIMT

 Multicore, multithreaded SIMT

 100k’s threads

 Multiple threads in lockstep (single PC for group of threads)

 Caches

 Maximize throughput

 Very little locality to exploit


