
Final Review
CSE 471 Spring 2015

Mark Wyse

June 04, 2015



Lecture Critique
 Don’t forget!

 1 page, summarize important points + your thoughts

 Exhibit good writing skills



Topics
 Multiprocessors

 Cache Coherence

 Synchronization

 MP Big Issues

 Multithreading

 Dataflow & Wavescalar

 GPUs



Multiprocessors
 Motivation:

 Lots of transistors

 Scaling (Moore and Denard) starting to fall over

 Workload opportunities: scientific, server, media

 Two key types:

 Bus based (low-end)

 Simpler, physically centralized memory, UMA

 Multiple-path interconnect (high-end)

 Complex, scalable, physically distributed memory, NUMA



Cache Coherence
 Cache Coherence Problem: if core X writes address A, then 

core Y reads address A, what value does it read?

 Assuming A was cached locally by both X and Y



A Definition of Coherence
1. Program Order

2. Coherent View of Memory

3. Write Serialization



Coherence
 Protocols

 MSI

 MESI

 Bus-based (snooping) vs Directory

 Differences

 Pros and cons (performance, scalability, etc.)

 Hardware support required



Synchronization
 Coherency protocols do not regulate access to shared data
 Critical sections

 Mutual exclusion between threads

 Barriers
 Point in execution which all threads must reach before any can 

proceed

 Locking
 Atomic read-modify-write
 Load-locked & Store Conditional

 Synchronization APIs
 Spin locks
 Blocking locks
 Queueing locks



MP Big Issues
 Programming model for interprocessor communication

 Shared Memory

 Message Passing

 Execution Model

 Control parallel

 Data parallel

 Dataflow

 Expressing error-free parallelism (hard)

 How do we guarantee/maintain correctness of parallelism?



Multithreading
 Execute multiple threads on the same processor without context 

switches
 Hardware contexts!

 Motivation:
 Performance
 Instruction throughput not scaling with issue width

 Coarse-grain MT
 Switch on long latency operations

 Fine-grain MT
 Can switch to different thread each cycle
 Cray (Tera) MTA

 Simultaneous Multithreading (SMT)
 CMP reduces horizontal waste; FGMT reduces vertical waste
 Same cycle multithreading



Cray (Tera) MTA
 Goals

 UMA, lightweight synchronization, heterogeneous parallelism

 Interesting Features
 FGMT: different thread each cycle, round-robin; processor state 

for 128 hardware contexts!

 No data caches

 No paging

 VLIW instructions

 Tagged memory

 Trade-off between avoiding memory bank conflicts & exploiting 
spatial locality for data



SMT
 Same cycle multithreading

 Convert TLP to ILP

 Thread-shared hardware resources

 Goals:
 Throughput gains for multiple threads

 Minimize single thread performance

 Minimize microarchitectural impact on conventional OoO
superscalar design

 Duplicate hardware

 No special hardware for scheduling from multiple threads!

 Comparison to CMP (pros and cons of each)



Dataflow
 Von Neumann vs. Dataflow Execution Models
 Dataflow:

 No PC
 No Register File
 Parallel execution only hindered by data dependencies
 Exploit ILP on a massive scale

 Dataflow Firing Rule: execute when operands arrived on all 
input arcs, place computed value on output arc.

 Steer and Merge operations
 Problems:

 Memory ordering
 Language compatibility
 Scalability (token store and wires)



Wavescalar
 Solves dataflow issues:

 Language compatibility & memory ordering

 scalability

 Waves

 loop free sections of dataflow graph

 Wave number

 Memory ordering

 Wave numbers

 Sequence numbers within a wave

 Hierarchical microarchitecture



GPUs
 Data parallelism

 Identical, Independent, Streaming computations

 SIMT

 Multicore, multithreaded SIMT

 100k’s threads

 Multiple threads in lockstep (single PC for group of threads)

 Caches

 Maximize throughput

 Very little locality to exploit


