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Today

® Parameter Estimation:
® Maximum Likelihood (ML)
® Maximum A Posteriori (MAP)
® Bayesian
e Continuous case
® | earning Parameters for a Bayesian Network
® Naive Bayes
® Maximum Likelihood estimates
® Priors
® |earning Structure of Bayesian Networks
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P(HIC,) = 0.1  P(H|C,) =05 P(H|(£;) =09
Which coin will | use?
P(C) =113 P(C) =113 P(C,) = I/3

Prior: Probability of a hypothesis
before we make any observations
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P(H|C)=0. P(H|C,) =05 P(H|¢3) =0.9

Which coin will | use?

P(C)=1/3 P(C)=1/3 P(C)) = 1/3
Uniform Prior:All hypothesis are equally likely
before we make any observations

Experiment |: Heads
Which coin did | use?
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[P(HIC,) = 0.1] P(H|c;> 05 P(HIC,) =09

PC) = 1/3] P(C,) = 1/3 P(C,) = I/3

Experiment |: Heads

Which coin did | use?
P(C,JH) = 0.066 P(C,|H) = 0333 P(C,|H) = 0.6

| Posterior: Probability of a hypothesis given data
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PHIC)=0.I P(H|C)=05  P(HIC) =09
P(C)=1/3 P(C)=1/3 P(C))=1/3



Experiment 2:Tails
Which coin did | use!?

P(C,|HT) =2? P(C,|HT) =? P(C,|HT) =2
P(C1[HT) = aP(HT|Cy)P(Cy) = aP(H|C1)P(T|C1)P(Ch)
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PHIC)=0. P(HIC,)=05  P(HIC)=09
P(C,) = 113 P(C,) = 113 P(C,) = 113

Experiment 2:Tails

Which coin did | use?
P(C,|HT) = 021 P(C,|HT) = 0.58 P(C,|HT) = 0.2
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P(HIC,) = 0.5
P(C,) = 1/3

Your Estimate!?

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

Most likely coin: Best estimate for P(H)

G, /;; P(H|C,) = 0.5
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P(H|C,) = 0.5

P(C,) = 1/3

Experiment 2:Tails
Which coin did | use!?

P(C,|HT) =0.21 P(C,|HT)=0.58 P(C,|HT)=0.21

P(C1|HT) = aP(HT|C1)P(Cy) = aP(H[C1)P(T|C1)P(Cr)
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Your Estimate!?

What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)

G, C:y P(H|C,) = 0.5
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P(HIC,) = 0.5
P(C,) = 1/3

Using Prior Knowledge

® Should we always use Uniform Prior?
® Background knowledge:
® Heads => you go first in Abalone against TA

® TAs are nice people
® =>TA is more likely to use a coin biased in

your favor
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P(HI|C)) = 0.1 P(H|C,) = 0.5 P(H|C,) = 0.9



Using Prior Knowledge

We can encode it in the prior:

P(C,) =0.05 P(C,) =0.25 P(C,) =0.70
CI C2 C3
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P(HIC)=0.1 P(HIC,) =05 P(HIC,) = 0.9

13

Experiment |: Heads

Which coin did | use!?
P(C,|H) =0.006 P(C,|H)=0.165 P(C,|H) =0.829
ML posterior after Exp I:
P(C,|H) =0.066 P(C,|H)=0.333 P(C,|H) = 0.600
¢

LU 3 so
P(HIC)=0.1 PHIC)=05  P(H|C)=09
P(C,) = 0.05 P(C,) = 0.25 P(C,) =0.70
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Experiment |: Heads

Which coin did | use?
P(C,|H) =? P(C,[H) = ? P(C,JH) =2

P(Cy|H) = aP(H|C,)P(Cy)

C, G G
Qo \f:; &y

P(HIC) = 0. P(HIC,) = 0.5 P(H|E;) =0.9
[ P(C)=005 P(C)=025 P(C) =070 |

4

Experiment 2:Tails
Which coin did | use?

P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485
C, C
r ‘\\. /
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PHIC)=0.1  P(HIC) =05  P(HIC, =09
PC)=005 P(C)=025  P(C,)=070
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Experiment 2:Tails
Which coin did | use?
P(C,|HT) =2? P(C,|HT) =? P(C,|HT) =2
P(CL|HT) = aP(HT|C1)P(Cy) = aP(H|C,)P(T|Cy)P(Cy)

C, C
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P(HIC)=0.1 P(H|C,) =05  P(HIC,) =0.9
P(C,) = 0.05 P(C,) = 0.25 P(C,) = 0.70
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Experiment 2:Tails
Which coin did | use?

P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

P(HIC,) = 0.9
P(C,) = 0.70




Your Estimate!?

What is the probability of heads after two experiments?

Most likely coin: Best estimate for P(H)

P(HI|C,) = 0.9

P(HIC,) = 0.9
P(C,) = 0.70
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Your Estimate!?

Maximum A Posteriori (MAP) Estimate: The best hypothesis
that fits observed data assuming a non-uniform prior

Did We Do The Right
Thing?

P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

CI CZ C3

P(HIC)=0.1 P(H|C,)=05  P(HIC,) =09
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Most likely coin: Best estimate for P(H)

P(HI|C,) = 0.9

A

4

P(HIC,) = 0.9
P(C,) = 0.70
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A Better Estimate

3
Recall: P(H) = P(H|C;)P(C;) =0.680

i=1
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

CI
P(HIC)=0. P(H|C)=05  P(H|C) =09
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Did We Do The Right
Thing?
P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

C, and C, are almost
ammequally likely -

w

CI
P(H|C)) = 0.1 P(H|C,) =0.5 P(HI|C,) =09
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Bayesian Estimate

Bayesian Estimate: Minimizes prediction error,
given data and (generally) assuming a non-uniform prior

P(H) = P(H|C;)P(C;) =0.680

P(C,|HT) = 0.035 P(C,|HT) = 0.481 P(C,|HT) = 0.485

P(H|C) = 0.1 P(H|C) =0.5 P(HIC;) =09
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Comparison

® ML (Maximum Likelihood):
P(H) =0.5

® MAP (Maximum A Posteriori):

P(H) =0.9
® Bayesian:
P(H) = 0.68
Comparison

® ML (Maximum Likelihood):
® MAP (Maximum A Posteriori):
® Bayesian:
® Minimizes error => great when data is

scarce
® Potentially much harder to compute
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Comparison

® ML (Maximum Likelihood):
P(H) = 0.5
after 10 experiments (HTH®): P(H) = 0.9

® MAP (Maximum A Posteriori):
P(H) = 0.9
after 10 experiments (HTH®): P(H) = 0.9

® Bayesian:
P(H) = 0.68
after 10 experiments (HTHS®): P(H) = 0.9
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Comparison

® ML (Maximum Likelihood):

® MAP (Maximum A Posteriori):
® Still easy to compute
® Incorporates prior knowledge
® Bayesian:
® Minimizes error => great when data is
scarce
® Potentially much harder to compute

28

Comparison

® ML (Maximum Likelihood):
® Easy to compute
® MAP (Maximum A Posteriori):
® Still easy to compute
® Incorporates prior knowledge
® Bayesian:
® Minimizes error => great when data is
scarce
® Potentially much harder to compute
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Summary For Now

Prior:

Uniform Prior:
Posterior:
Likelihood:

30



Summary For Now

® Prior: Probability of a hypothesis before we see any data
e Uniform Prior:A prior that makes all hypothesis equaly likely
e Posterior: Probability of a hypothesis after we saw some data
e Likelihood: Probability of data given hypothesis
Prior Hypothesis
Maximum' Likelihood Uniform The most likely
Estimate
Maximum A Posteriori Any The most likely
Estimate
Weighted
Bayesian Estimate Any combination
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Continuous Case

33

Continuous Case

® In the previous example, we chose from a
discrete set of three coins

® |n general, we have to pick from a
continuous distribution of biased coins
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Continuous Case
Prior Exp |:Heads Exp 2:Tails

uniform
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Continuous Case
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Continuous Case

Posterior after 2 experiments:

ML Estimate — ¥
MAP Estimate -+ 4:\
Bayesian Estimate - - - / i
@ ¢ »: o
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After 10 Experiments...

Posterior:

ML Estimate —
MAP Estimate -
Bayesian Estimate - - -
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Parameter Estimation
and Bayesian Networks

@ @
7 T F|T|T|F|T
F F | F F | F|T

FIT|F | T | T|T
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F T F F | F|F

We have:
- Bayes Net structure and observations
- We need: Bayes Net parameters
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Parameter Estimation
and Bayesian Networks

Eur‘thquake Burgla

E|B A
T F T
FLF F
FLF T
FLT F
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After 100 Experiments...
Posterior:
ML Estimate — ‘l‘
MAP Estimate - h
Bayesian Estimate - - - 7H
@ux ) = Lo}
@ir_,: > J;» ':]-.‘
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Parameter Estimation
and Bayesian Networks

5
/ :
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Prior

Now compute
P(B) =? E + data = g either MAP or

'|Bayesian estimate
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Parameter Estimation
and Bayesian Networks

Eur‘thquake Burgla E B A

T F T

F F F

@ FlT T

F F T

F T F
P(A|E B) =?
P(A|E,~B) =?
P(A|-E,B) = ?

P(A|~E,-B) = ?
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Parameter Estimation
and Bayesian Networks

Eur‘thquake Bur'gla E B A
T E T
—F E
—F T
FT F
Prlor
Now compute
P(A|-EB) =2 ||+ data= 7% elthgr MAI? or
— ~—| Bayesian estimate
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Naive Bayes
<>
Qe D

® A Bayes Net where all nodes are children
of a single root node

® Why!?
® Expressive and accurate?

® Easy to learn?
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Parameter Estimation
and Bayesian Networks

Eur‘thquake Bur'gla E B A
T F T
F F F
@ FlT T
F F T
F T F
P(A|E,-~B) = ?

You know the drill...
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Naive Bayes
smn 2
<>

® A Bayes Net where all nodes are children
of a single root node

® Why!?
® Expressive and accurate! No

® Easy to learn? Yes
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Naive Bayes
Cemn 2
<>

® A Bayes Net where all nodes are children
of a single root node

® Why?
® Expressive and accurate! No - why!?

® Easy to learn?
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Naive Bayes
smn 2
<>

® A Bayes Net where all nodes are children
of a single root node

® Why!?
® Expressive and accurate! No
® Easy to learn? Yes

o Useful? Sometimes
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Inference In Naive Bayes
@ P(S) = 0.6
<>

P(AIS) =001 P(B[S) = 0001 P(FIS) = 0.8 PATS) =7
P(AIRS) = 0.1  P(B[-S) = 0.01 P(F|-S) = 0.05 P(AIS) =2

® Goal, given evidence (words in an email)
decide if an email is spam

E={A-B,F,-K,..}
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Inference In Naive Bayes
@ P(S) = 0.6
<>

P(AIS) =001  P(B[S) = 0.00! P(FIS) = 08 PATS) = ?
P(AIS)=0.1  P(B[-S) = 0.0 P(F|-S) = 0.05 P(A]-S) =2
P(A|S)P(=B|S)P(F|S)P(~K|S)P(...|S)P(S)
[P(A)P(-B)P(F)P(-K)P(...)|

P(S|E) =

P(A|~8)P(~B|~S)P(F|~8)P(~K|-S)P(...|~S)P(~S)
[P(A)P(=B)P(F)P(~K)P(..)]

Spam if P(S|E) > P(=S|E)
But...

P(~S|E) =
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Inference In Naive Bayes
@ P(S) = 0.6
Crmee D

P(AIS =001 P(B[s) = 000! P(FIS) = 08 PAR) = !
P(A|-S) = 0.1 P(B|-S) = 0.01 P(F|=S) = 0.05 P(A|-S) =2
P(E|S)P(S)
PSIE) = =5

P(A,-B,F,-K,...|S)P(S) Independence

P(A,-B,F,—K,...) {o the rescue!

_ P(A|S)P(=B|S)P(F|S)P(=K|S)P(....|$)P(S)
P(A)P(~B)P(F)P(-K)P(...)
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Parameter Estimation Revisited
<>

® Can we calculate Maximum Likelihood

estimate of O easily?

Max Likelihood
D ata: estimate

- find the derivative
- set it to zero

N = I
9 &2 & 0
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Inference In Naive Bayes

sender =
Krzysztof

PAR) = 00| [PeB|s) = 0001 P(FIS) = 08 PAR) = !
P(A|=S) = 0.1 P(B|=S) = 0.01 P(F|=S) = 0.05 P(A|=S) =2

P(S|E) o< [P(A|S)P(-BISIP(F|S)P(=K|S)P(...|S)[P(S)

P(=S|E) o P(A|~S)P(~B|~8)P(F|~8)P(~K|~S)P(...|~S)P(~S)
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Prior Looking for the
il L i maximum of a function:

Parameter Estimation Revisited
<>

® What function are we maximizing?
P(data|hypothesis)
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Parameter Estimation Revisited

® What function are we maximizing?
P(data|hypothesis)

® hypothesis = hy (one for each value of 0)
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Parameter Estimation Revisited

® What function are we maximizing?
P(data|hypothesis)

® hypothesis = hy (one for each value of 0)

® P(datajhg) = P(ER|ho)P( & |he)P(& |he)P(EE|N,)
= 06 (1-6 (1-6 6
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Parameter Estimation Revisited

® To find O that maximizes 6#@(1—6)#@
we take a derivative of the function

and set it to 0. And we get:
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Parameter Estimation Revisited

® What function are we maximizing?
P(data|hypothesis)

® hypothesis = hy (one for each value of 0)

® P(data|hg) = P(ERhe)P( & |hg)P(& |he)P(ER|ho)
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Parameter Estimation Revisited

® What function are we maximizing?
P(data|hypothesis)

® hypothesis = hy (one for each value of 0)

® P(datalhg) = P(ES|ho)P( & |ho)P( & |ho)P(ER|h)
= 6 (1-6) (1-6) 0
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Parameter Estimation Revisited

® To find O that maximizes 6#@(1—6)#@
we take a derivative of the function

and set it to 0. And we get:

#HE

CPO=0= mise
® You knew it already, right?
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Problems With Small
Samples

® What happens if in your training data
apples are not mentioned in any spam
message!

® P(A|S)=0
® Why is it bad?

P(S|[E)xx 0 P(~B|S)P(F|S)P(~K|S)P(...|S)P(S) = 0
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Smoothing

® Smoothing is used when samples are small

® Add-one smoothing is the simplest
smoothing method: just add | to every
count!
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Priors!
#HE
® Recall that P(S) = ————
ecall that P(S) #HE+ #e
Priors!
#HE
® Recall that P(S) = ————
ecall that P(S) #E+ #e
® [f we have a slight hunch that P(S) = p
£+
P(S) = #HE *tp
#BE+#et
® |f we have a big hunch that P(S) = p
#E + mp
#BE+#e+tm

where m can be any number > 0
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Priors!

#E
#tE+ #e
® [f we have a slight hunch that P(S) = p
#E +p
#E+ #e * |

® Recall that P(S) =

P©) =

64

Priors!
#E + mp

P(S) =
#E+#e+tm

® Note that if m = 10 in the above, it is like
saying ““| have seen 10 samples that make
me believe that P(S) = p”

® Hence, m is referred to as the
equivalent sample size
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Priors!
#ER +mp

P(S) =
#E+#e+tm

® Where should p come from?
® No prior knowledge => p=0.5

® |f you build a personalized spam filter, you
can use p = P(S) from some body else’s
filter!
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Inference in Naive
Bayes Revisited
® Recall that
P(S|E) « P(A|S)P(~B|S)P(F|S)P(~K|S)P(...|S)P(S)

® We are multiplying lots of small numbers
together => danger of underflow!

® Solution? Use logs!
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Inference in Naive
Bayes Revisited

® Recall that

P(S|E) « P(A|S)P(~B|S)P(F|S)P(~K|S)P(...|S)P(S)

Is there any potential for trouble here?
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Learning The Structure
of Bayesian Networks

® General idea: look at all possible network
structures and pick one that fits observed
data best

® |mpossibly slow: exponential number of
networks, and for each we have to learn
parameters, too!

® What do we do if searching the space
exhaustively is too expensive?

il

Inference in Naive
Bayes Revisited

log(P(S|E)) o log(P(A|S)P(—B|S)P(F|S)P(-K|S)P(...|S)P(S))
o log(P(A[S))+og(P(~B|S))+log(P(F|S))+log(P(~K|S))+log(P(...|S))+log(P(S)))

® Now we add “regular” numbers -- little
danger of over- or underflow errors!
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Learning The Structure
of Bayesian Networks

® | ocal search!
® Start with some network structure

® Try to make a change (add, delete or
reverse node)

® See if the new network is any better
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Learning The Structure
of Bayesian Networks

® What network structure should we start
with?

® Random with uniform prior?

® Networks that reflects our (or experts’)
knowledge of the field?
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Learning The Structure
of Bayesian Networks

® We have just described how to get an ML
or MAP estimate of the structure of a
Bayes Net

® What would the Bayes estimate look like?
® Find all possible networks
® Calculate their posteriors

® When doing inference: result weighed
combination of all networks!
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Learning The Structure
of Bayesian Networks

prior network+equivalent sample size
@ @ improved network(s)
() L

)

E
data
X, X. Xq /
true | false | true
false | false | true

false | false | false | -
true | true | false
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