Statistical Learning

CSE 473
Spring 2004

Today

- Parameter Estimation:
- Maximum Likelihood (ML)
- Maximum A Posteriori (MAP)
- Bayesian
- Continuous case
- Learning Parameters for a Bayesian Network
- Naive Bayes
- Maximum Likelihood estimates
- Priors
- Learning Structure of Bayesian Networks

Coin Flip

Which coin will I use?
$P\left(C_{1}\right)=1 / 3 \quad P\left(C_{2}\right)=1 / 3 \quad P\left(C_{3}\right)=1 / 3$
Uniform Prior:All hypothesis are equally likely before we make any observations

Experiment I: Heads

Which coin did I use?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.066 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.333 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.6$

Posterior: Probability of a hypothesis given data

Experiment 2:Tails

Which coin did I use?
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=?$
$P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
$P\left(C_{1}\right)=1 / 3$
$P\left(C_{2}\right)=I / 3$
$P\left(C_{3}\right)=1 / 3$

Experiment 2:Tails

Which coin did I use?
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.21 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.58 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.21$
$P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)$

Experiment 2:Tails

Which coin did I use?

$P\left(C_{1} \mid H T\right)=0.21 \quad P\left(C_{2} \mid H T\right)=0.58 \quad P\left(C_{3} \mid H T\right)=0.21$

-

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin:
C_{2}

Best estimate for $\mathrm{P}(\mathrm{H})$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5
$$

$$
P\left(C_{2}\right)=I / 3
$$

Using Prior Knowledge

- Should we always use Uniform Prior?
- Background knowledge:
- Heads => you go first in Abalone against TA
- TAs are nice people
- => TA is more likely to use a coin biased in your favor

Using Prior Knowledge

We can encode it in the prior:

$\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05$	$\mathrm{P}\left(\mathrm{C}_{2}\right)=0.25$	$\mathrm{P}\left(\mathrm{C}_{3}\right)=0.70$
C_{1}	C_{2}	C_{3}
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Experiment I: Heads

Which coin did I use?
$\mathrm{P}\left(\mathrm{C}_{1} \mid H\right)=0.006 \quad \mathrm{P}\left(\mathrm{C}_{2} \mid H\right)=0.165 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid H\right)=0.829$
$\begin{array}{ccc}\text { ML posterior after Exp I: } \\ \mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=0.066 & \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=0.333 & \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=0.600 \\ \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3} \\ \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 & \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \\ \mathrm{P}\left(\mathrm{C}_{1}\right)=0.05 & \mathrm{P}\left(\mathrm{C}_{2}\right)=0.25 & \mathrm{P}\left(\mathrm{C}_{3}\right)=0.70\end{array}$

Experiment I: Heads

Which coin did I use?
$P\left(C_{1} \mid H\right)=? \quad P\left(C_{2} \mid H\right)=? \quad P\left(C_{3} \mid H\right)=$? $P\left(C_{1} \mid H\right)=\alpha P\left(H \mid C_{1}\right) P\left(C_{1}\right)$

Experiment 2:Tails

 Which coin did I use?$$
P\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=\text { ? }
$$

$$
P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)
$$

Experiment 2:Tails

Which coin did I use?
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

YOUr Estimate?
What is the probability of heads after two experiments?
Most likely coin:Best estimate for $\mathrm{P}(\mathrm{H})$ $\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$ C_{3} C_{3} $\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)$ $\mathrm{P}\left(\mathrm{C}_{3}\right)=0.9$

Did We Do The Right Thing?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.48 \mathrm{I} \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

$P\left(H \mid C_{1}\right)=0.1$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Your Estimate?

Maximum A Posteriori (MAP) Estimate:The best hypothesis that fits observed data assuming a non-uniform prior

Most likely coin:
C_{3}

Best estimate for $\mathrm{P}(\mathrm{H})$

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9
$$

$$
P\left(C_{3}\right)=0.70
$$

Did We Do The Right Thing?

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.48 \mathrm{I} \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$
C_{2} and C_{3} are almost

C_{2}
C_{3}

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9
$$

A Better Estimate

Recall: $\quad P(H)=\sum_{i=1}^{3} P\left(H \mid C_{i}\right) P\left(C_{i}\right)=0.680$
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.48 \mathrm{I} \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error, given data and (generally) assuming a non-uniform prior

$$
P(H)=\sum_{i=1}^{3} P\left(H \mid C_{i}\right) P\left(C_{i}\right)=0.680
$$

$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.48 \mathrm{I} \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$

$P\left(H \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Comparison

- ML (Maximum Likelihood):
$P(H)=0.5$
- MAP (Maximum A Posteriori):
$P(H)=0.9$
- Bayesian:
$P(H)=0.68$

Comparison

- ML (Maximum Likelihood):
$\mathrm{P}(\mathrm{H})=0.5$
after 10 experiments $\left(\mathrm{HTH}^{8}\right): ~ P(H)=0.9$
- MAP (Maximum A Posteriori): $P(H)=0.9$
after 10 experiments $\left(\mathrm{HTH}^{8}\right): \mathrm{P}(\mathrm{H})=0.9$
- Bayesian:
$\mathrm{P}(\mathrm{H})=0.68$
after 10 experiments $\left(\mathrm{HTH}^{8}\right): \mathrm{P}(\mathrm{H})=0.9$

Comparison

- ML (Maximum Likelihood):
- MAP (Maximum A Posteriori):
- Bayesian:
- Minimizes error => great when data is scarce
- Potentially much harder to compute

Comparison

- ML (Maximum Likelihood):
- Easy to compute
- MAP (Maximum A Posteriori):
- Still easy to compute
- Incorporates prior knowledge
- Bayesian:
- Minimizes error => great when data is scarce
- Potentially much harder to compute

Comparison

- ML (Maximum Likelihood):
- MAP (Maximum A Posteriori):
- Still easy to compute
- Incorporates prior knowledge
- Bayesian:
- Minimizes error => great when data is scarce
- Potentially much harder to compute

Summary For Now

- Prior:

- Uniform Prior:
- Posterior:
- Likelihood:

Summary For Now

- Prior: Probability of a hypothesis before we see any data
- Uniform Prior:A prior that makes all hypothesis equaly likely
- Posterior: Probability of a hypothesis after we saw some data
- Likelihood: Probability of data given hypothesis

	Prior	Hypothesis
Maximum Likelihood Estimate Maximum A Posteriori Estimate	Uniform	The most likely
Bayesian Estimate	Any	The most likely
	Any	Weighted combination

Continuous Case

- In the previous example, we chose from a discrete set of three coins
- In general, we have to pick from a continuous distribution of biased coins

Continuous Case

Continuous Case

Posterior after 2 experiments:

After 10 Experiments...

After 100 Experiments...

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
- Expressive and accurate?
- Easy to learn?

Parameter Estimation and Bayesian Networks

\mathbf{E}	\mathbf{B}
T	F
F	F
F	T
F	F
F	T
\ldots	

\mathbf{A}
T
F
T
T
F

$P(A \mid E, B)=$?
$\mathrm{P}(\mathrm{A} \mid \mathrm{E}, \neg \mathrm{B})=$? \quad You know the drill...
$P(A \mid \neg E, \neg B)=$?

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
- Expressive and accurate? No - why?
- Easy to learn?

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
- Expressive and accurate? No
- Easy to learn? Yes

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
- Expressive and accurate? No
- Easy to learn? Yes
- Useful? Sometimes

Inference In Naive Bayes

- Goal, given evidence (words in an email) decide if an email is spam

$$
E=\{A, \neg B, F, \neg K, \ldots\}
$$

Inference In Naive Bayes

$$
P(S \mid E)=\frac{P(E \mid S) P(S)}{P(E)}
$$

$$
=\frac{P(A, \neg B, F, \neg K, \ldots \mid S) P(S)}{P(A, \neg B, F, \neg K, \ldots)} \quad \begin{array}{r}
\text { Independence }
\end{array} \text { to the rescue! }
$$

$$
=\frac{P(A \mid S) P(\neg B \mid S) P(F \mid S) P(\neg K \mid S) P(\ldots \mid S) P(S)}{P(A) P(\neg B) P(F) P(\neg K) P(\ldots)}
$$

Inference In Naive Bayes

$P(S \mid E) \propto P(A \mid S) P(\neg B \mid S) P(F \mid S) P(\neg K \mid S) P(\ldots \mid S) P(S)$
$P(\neg S \mid E) \propto P(A \mid \neg S) P(\neg B \mid \neg S) P(F \mid \neg S) P(\neg K \mid \neg S) P(\ldots \mid \neg S) P(\neg S)$

Spam if $P(S \mid E)>P(\neg S \mid E)$
But...

Parameter Estimation Revisited

- What function are we maximizing? P(data|hypothesis)

Parameter Estimation Revisited

－What function are we maximizing？ P （data｜hypothesis）
－hypothesis $=h_{\theta}$（one for each value of θ ）

Parameter Estimation Revisited

－What function are we maximizing？ P（data｜hypothesis）
－hypothesis $=h_{\theta}$（one for each value of θ ）
－$P\left(\right.$ data $\left.\mid h_{\theta}\right)=P\left(\right.$ 图 $\left.\mid h_{\theta}\right) P\left(\otimes \mid h_{\theta}\right) P\left(\otimes \mid h_{\theta}\right) P\left(\right.$ 咆 $\left.\mid h_{\theta}\right)$

Parameter Estimation Revisited

－What function are we maximizing？ P（data｜hypothesis）
－hypothesis $=h_{\theta}$（one for each value of θ ）
－$P\left(\right.$ data $\left.\mid h_{\theta}\right)=P\left(\right.$ 畭 $\left.\mid h_{\theta}\right) P\left(\otimes \mid h_{\theta}\right) P\left(\otimes \mid h_{\theta}\right) P\left(\right.$ 罜 $\left.\mid h_{\theta}\right)$

$$
=\theta \quad(1-\theta)(1-\theta) \quad \theta
$$

Parameter Estimation Revisited

－To find θ that maximizes $\theta^{\# \text { 畨 }}(1-\theta)^{\# 凶}$ we take a derivative of the function and set it to 0 ．And we get：

Parameter Estimation Revisited

－What function are we maximizing？ P（data｜hypothesis）
－hypothesis $=h_{\theta}$（one for each value of θ ）

$$
\begin{aligned}
& =\theta(1-\theta)(1-\theta) \\
& =\theta^{\# 1}(1-\theta)^{\# \otimes}
\end{aligned}
$$

Parameter Estimation Revisited

－To find θ that maximizes $\theta^{\#}{ }^{\text {圈 }}(1-\theta){ }^{\# \text { Q }}$ we take a derivative of the function and set it to 0 ．And we get：
－ $\mathrm{P}(\mathrm{S})=\theta=\frac{\# \text { 图 }}{\# \text { 图 }+ \text { \＃}}$
－You knew it already，right？

Problems With Small Samples

－What happens if in your training data apples are not mentioned in any spam message？
－ $\mathrm{P}(\mathrm{A} \mid \mathrm{S})=0$
－Why is it bad？
$P(S \mid E) \propto \quad 0 \quad P(\neg B \mid S) P(F \mid S) P(\neg K \mid S) P(\ldots \mid S) P(S)=\mathbf{0}$

Priors！

－Recall that $P(S)=\frac{\text { \＃图 }}{\# \text { 图 }+ \text { 国 }}$

Priors！ －Recall that $P(S)=\frac{\# \text { 图 }}{\# \text { 总 }+\#}$

Priors！

－Recall that $P(S)=\frac{\text { \＃图 }}{\# 1 \text { \＃\＃}}$
－If we have a slight hunch that $P(S) \approx p$
$P(S)=\frac{\# \text { 圈 }+p}{\# \text { 图 }+2+1}$
－If we have a big hunch that $\mathrm{P}(\mathrm{S}) \approx p$
where m can be any number >0

Smoothing

－Smoothing is used when samples are small
－Add－one smoothing is the simplest smoothing method：just add I to every count！

Priors！

－Recall that $P(S)=\frac{\text { \＃漛 }}{\# \text { 包 }+ \text { \＃}}$
－If we have a slight hunch that $\mathrm{P}(\mathrm{S}) \approx p$

$$
P(s)=\frac{\begin{array}{c}
\text { Priors! } \\
\# \text { \#圆 }+m p
\end{array}}{\#+\#+m}
$$

－Note that if $m=10$ in the above，it is like saying＂I have seen 10 samples that make me believe that $P(S)=p$＂
－Hence，m is referred to as the equivalent sample size

$$
P(s)=\frac{\begin{array}{c}
\text { Priors! } \\
\# \text { 圆 }+m p
\end{array}}{\#+\#+\theta^{2}+m}
$$

- Where should p come from?
- No prior knowledge $=>p=0.5$
- If you build a personalized spam filter, you can use $p=P(S)$ from some body else's filter!

Inference in Naive Bayes Revisited

- Recall that

```
P(S|E)\proptoP(A|S)P(\negB|S)P(F|S)P(\negK|S)P(\ldots|S)P(S)
```

Is there any potential for trouble here?

Inference in Naive Bayes Revisited

- Recall that
$P(S \mid E) \propto P(A \mid S) P(\neg B \mid S) P(F \mid S) P(\neg K \mid S) P(\ldots \mid S) P(S)$
- We are multiplying lots of small numbers together => danger of underflow!
- Solution? Use logs!

Learning The Structure of Bayesian Networks

- General idea: look at all possible network structures and pick one that fits observed data best
- Impossibly slow: exponential number of networks, and for each we have to learn parameters, too!
- What do we do if searching the space exhaustively is too expensive?

Learning The Structure of Bayesian Networks

- Local search!
- Start with some network structure
- Try to make a change (add, delete or reverse node)
- See if the new network is any better

Learning The Structure of Bayesian Networks

- What network structure should we start with?
- Random with uniform prior?
- Networks that reflects our (or experts') knowledge of the field?

Learning The Structure of Bayesian Networks

Learning The Structure of Bayesian Networks

- We have just described how to get an ML or MAP estimate of the structure of a Bayes Net
- What would the Bayes estimate look like?
- Find all possible networks
- Calculate their posteriors
- When doing inference: result weighed combination of all networks!

