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Today

• Parameter Estimation:

• Maximum Likelihood (ML)

• Maximum A Posteriori (MAP)

• Bayesian

• Continuous case

• Learning Parameters for a Bayesian Network

• Naive Bayes

• Maximum Likelihood estimates

• Priors

• Learning Structure of Bayesian Networks
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Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations
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Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P (C1|H) =
P (H|C1)P (C1)

P (H)

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P (H) =
3∑

i=1

P (H|Ci)P (Ci)
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data
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Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)
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Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = 0.21 P(C2|HT) = 0.58 P(C3|HT) = 0.21

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)
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Experiment 2: Tails

Which coin did I use?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(C1|HT) = 0.21 P(C2|HT) = 0.58 P(C3|HT) = 0.21
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Your Estimate?
What is the probability of heads after two experiments?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Best estimate for P(H) 

P(H|C2) = 0.5

Most likely coin: 

C2
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Your Estimate?

P(H|C2) = 0.5

C2

P(C2) = 1/3

Most likely coin: Best estimate for P(H) 

P(H|C2) = 0.5C2

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior
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Using Prior Knowledge

• Should we always use Uniform Prior?

• Background knowledge:

• Heads => you go first in Abalone against TA

• TAs are nice people

• => TA is more likely to use a coin biased in 
your favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3
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Using Prior Knowledge

P(H|C2) = 0.5P(H|C1) = 0.1

C1
C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

We can encode it in the prior:
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P (C1|H) = αP (H|C1)P (C1)
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006 P(C2|H) = 0.165 P(C3|H) = 0.829

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.600

ML posterior after Exp 1:

15

Experiment 2: Tails

Which coin did I use?

P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70
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Experiment 2: Tails

Which coin did I use?

P (C1|HT ) = αP (HT |C1)P (C1) = αP (H|C1)P (T |C1)P (C1)

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485
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Experiment 2: Tails

Which coin did I use?

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70
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Your Estimate?
What is the probability of heads after two experiments?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Best estimate for P(H) 

P(H|C3) = 0.9C3

Most likely coin: 
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Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C3) = 0.9C3

Maximum A Posteriori (MAP) Estimate: The best hypothesis 
that fits observed data assuming a non-uniform prior

P(H|C3) = 0.9

C3

P(C3) = 0.70
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Did We Do The Right 
Thing?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485
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Did We Do The Right 
Thing?

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

C2 and C3 are almost 

equally likely
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A Better Estimate

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P (H) =
3∑

i=1

P (H|Ci)P (Ci)Recall: = 0.680

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485
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Bayesian Estimate

P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1
C2 C3

P (H) =
3∑

i=1

P (H|Ci)P (Ci) = 0.680

Bayesian Estimate: Minimizes prediction error, 
given data and (generally) assuming a non-uniform prior
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Comparison

• ML (Maximum Likelihood): 
P(H) = 0.5
after 10 experiments: P(H) = 0.9

• MAP (Maximum A Posteriori): 
P(H) = 0.9
after 10 experiments: P(H) = 0.9

• Bayesian: 
P(H) = 0.68
after 10 experiments: P(H) = 0.9
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Comparison

• ML (Maximum Likelihood): 
P(H) = 0.5
after 10 experiments (HTH8): P(H) = 0.9

• MAP (Maximum A Posteriori): 
P(H) = 0.9
after 10 experiments (HTH8): P(H) = 0.9

• Bayesian: 
P(H) = 0.68
after 10 experiments (HTH8): P(H) = 0.9
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Comparison

• ML (Maximum Likelihood):

• Easy to compute 

• MAP (Maximum A Posteriori): 

• Still easy to compute

• Incorporates prior knowledge

• Bayesian: 

• Minimizes error => great when data is 
scarce

• Potentially much harder to compute
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Comparison

• ML (Maximum Likelihood):

• Easy to compute 

• MAP (Maximum A Posteriori): 

• Still easy to compute

• Incorporates prior knowledge

• Bayesian: 

• Minimizes error => great when data is 
scarce

• Potentially much harder to compute
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Comparison

• ML (Maximum Likelihood):

• Easy to compute 

• MAP (Maximum A Posteriori): 

• Still easy to compute

• Incorporates prior knowledge

• Bayesian: 

• Minimizes error => great when data is 
scarce

• Potentially much harder to compute
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Summary For Now
• Prior: Probability of a hypothesis before we see any data

• Uniform Prior: A prior that makes all hypothesis equaly likely

• Posterior: Probability of a hypothesis after we saw some data

• Likelihood: Probability of data given hypothesis
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Summary For Now
• Prior: Probability of a hypothesis before we see any data

• Uniform Prior: A prior that makes all hypothesis equaly likely

• Posterior: Probability of a hypothesis after we saw some data

• Likelihood: Probability of data given hypothesis

Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A Posteriori 
Estimate

Bayesian Estimate

Uniform The most likely

Any The most likely

Any
Weighted 

combination
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Continuous Case

• In the previous example, we chose from a 
discrete set of three coins

• In general, we have to pick from a 
continuous distribution of biased coins
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Continuous Case

33

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Continuous Case
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0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Continuous Case
Prior

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Exp 1: Heads

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Exp 2: Tails

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

uniform

with background
knowledge
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Continuous Case

0

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bayesian Estimate

MAP Estimate

ML Estimate

Posterior after 2 experiments:

w/ uniform prior

with background
knowledge

36



-1

0

1
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3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

After 10 Experiments...
Posterior:

Bayesian Estimate

MAP Estimate

ML Estimate
w/ uniform prior

with background
knowledge
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3
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

After 100 Experiments...
Posterior:

Bayesian Estimate

MAP Estimate

ML Estimate
w/ uniform prior

with background
knowledge
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Parameter Estimation 
and Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

We have: 
- Bayes Net structure and observations
- We need: Bayes Net parameters
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Parameter Estimation 
and Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(B) = ?
-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Prior

+ data = 
-2

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

Now compute
either MAP or

Bayesian estimate
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Parameter Estimation 
and Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...
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Parameter Estimation 
and Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?

P(A|¬E,¬B) = ?
42



Parameter Estimation 
and Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?

P(A|¬E,¬B) = ?

Now compute
either MAP or

Bayesian estimate

Prior

0

1

2

0 0.2 0.4 0.6 0.8 1

+ data = 
0

1

2

0 0.2 0.4 0.6 0.8 1
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Parameter Estimation 
and Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?

P(A|¬E,¬B) = ?

You know the drill...
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Naive Bayes

• A Bayes Net where all nodes are children 
of a single root node

• Why?

• Expressive and accurate?

• Easy to learn?

Spam

FREE apple Bayes
sender = 
Krzysztof

...
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Naive Bayes

• A Bayes Net where all nodes are children 
of a single root node

• Why?

• Expressive and accurate? No - why?

• Easy to learn?

Spam

Apple Bayes FREE
sender = 
Krzysztof

...
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Naive Bayes

• A Bayes Net where all nodes are children 
of a single root node

• Why?

• Expressive and accurate? No

• Easy to learn? Yes

Spam

Apple Bayes FREE
sender = 
Krzysztof

...
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Naive Bayes

• A Bayes Net where all nodes are children 
of a single root node

• Why?

• Expressive and accurate? No

• Easy to learn? Yes

• Useful? Sometimes 

Spam

Apple Bayes FREE
sender = 
Krzysztof

...
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Inference In Naive Bayes

• Goal, given evidence (words in an email) 
decide if an email is spam

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

E = {A,¬B, F,¬K, . . .}
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Inference In Naive Bayes
Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

P (S|E) =
P (E|S)P (S)

P (E)

=
P (A,¬B, F,¬K, . . . |S)P (S)

P (A,¬B, F,¬K, . . .)

=
P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S)

P (A)P (¬B)P (F )P (¬K)P (. . .)

Independence 
to the rescue!
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Inference In Naive Bayes
Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

=
P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S)

P (A)P (¬B)P (F )P (¬K)P (. . .)
P (S|E)

P (¬S|E) =
P (A|¬S)P (¬B|¬S)P (F |¬S)P (¬K|¬S)P (. . . |¬S)P (¬S)

P (A)P (¬B)P (F )P (¬K)P (. . .)

Spam if P(S|E) > P(¬S|E)

But...
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Inference In Naive Bayes
Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = 0.6

P(A|S) = 0.01
P(A|¬S) = 0.1

P(B|S) = 0.001
P(B|¬S) = 0.01

P(F|S) = 0.8
P(F|¬S) = 0.05

P(A|S) = ?
P(A|¬S) = ?

P (¬S|E) ∝ P (A|¬S)P (¬B|¬S)P (F |¬S)P (¬K|¬S)P (. . . |¬S)P (¬S)

P (S|E) ∝ P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S)
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Parameter Estimation Revisited

• Can we calculate Maximum Likelihood 
estimate of ! easily?

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !

Data:

+ 

Prior

0

1

2

0 0.2 0.4 0.6 0.8 1

!

= 
0

1

2

0 0.2 0.4 0.6 0.8 1

!

Looking for the 
maximum of a function:
- find the derivative
- set it to zero

Max Likelihood
estimate
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Parameter Estimation Revisited

• What function are we maximizing?
P(data|hypothesis)

• hypothesis = h
!
 (one for each value of !)

• P(data|h
!
) = P(    |h

!
)P(    |h

!
)P(    |h

!
)P(    |h

!
)

               =       !     (1-!)   (1-!)      ! 

             =      !#    (1-!)#

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !
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Parameter Estimation Revisited

• What function are we maximizing?
P(data|hypothesis)

• hypothesis = h
!
 (one for each value of !)

• P(data|h
!
) = P(    |h

!
)P(    |h

!
)P(    |h

!
)P(    |h

!
)

               =       !     (1-!)   (1-!)      ! 

             =      !#    (1-!)#

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !
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Parameter Estimation Revisited

• What function are we maximizing?
P(data|hypothesis)

• hypothesis = h
!
 (one for each value of !)

• P(data|h
!
) = P(    |h

!
)P(    |h

!
)P(    |h

!
)P(    |h

!
)

               =       !     (1-!)   (1-!)      ! 

             =      !#    (1-!)#

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !
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Parameter Estimation Revisited

• What function are we maximizing?
P(data|hypothesis)

• hypothesis = h
!
 (one for each value of !)

• P(data|h
!
) = P(    |h

!
)P(    |h

!
)P(    |h

!
)P(    |h

!
)

               =       !     (1-!)   (1-!)      ! 

             =      !#    (1-!)#

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !
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Parameter Estimation Revisited

• What function are we maximizing?
P(data|hypothesis)

• hypothesis = h
!
 (one for each value of !)

• P(data|h
!
) = P(    |h

!
)P(    |h

!
)P(    |h

!
)P(    |h

!
)

               =       !     (1-!)   (1-!)      ! 

             =      !#    (1-!)#

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !
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Parameter Estimation Revisited

• To find ! that maximizes !#    (1-!)#

we take a derivative of the function 

and set it to 0.  And we get:

• P(S) = ! = #    / (#     + #    )

• You knew it already, right?

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !
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Parameter Estimation Revisited

• To find ! that maximizes !#    (1-!)#

we take a derivative of the function 

and set it to 0.  And we get:

• P(S) = ! = 

• You knew it already, right?

Spam

Apple Bayes FREE
sender = 
Krzysztof

...

P(S) = !

#     + #    

#
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Problems With Small 
Samples

• What happens if in your training data 
apples are not mentioned in any spam 
message?

• P(A|S) = 0

• Why is it bad?

P (S|E) ∝ P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S) = 00
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Smoothing

• Smoothing is used when samples are small

• Add-one smoothing is the simplest 
smoothing method: just add 1 to every 
count!
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Priors!

• Recall that P(S) =

• If we have a slight hunch that P(S) ! p

P(S) = 

• If we have a big hunch that P(S) ! p

#     + #    

#

#     + #    

# + p

+ 1

#     + #    

# + mp

+ m

where m can be any number > 0
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Priors!

• Recall that P(S) =

• If we have a slight hunch that P(S) ! p

P(S) = 

• If we have a big hunch that P(S) ! p

#     + #    

#

#     + #    

# + p

+ 1

#     + #    

# + mp

+ m

where m can be any number > 0
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Priors!

• Recall that P(S) =

• If we have a slight hunch that P(S) ! p

P(S) = 

• If we have a big hunch that P(S) ! p

#     + #    

#

#     + #    

# + p

+ 1

#     + #    

# + mp

+ m

where m can be any number > 0
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Priors!

• Note that if m = 10 in the above, it is like 
saying “I have seen 10 samples that make 
me believe that P(S) = p”

• Hence, m is referred to as the 
equivalent sample size

#     + #    

# + mp

+ m
P(S) = 
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Priors!

• Where should p come from?

• No prior knowledge => p=0.5

• If you build a personalized spam filter, you 
can use p = P(S) from some body else’s 
filter!

#     + #    

# + mp

+ m
P(S) = 
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Inference in Naive 
Bayes Revisited

• Recall that

• We are multiplying lots of small numbers 
together => danger of underflow!

• Solution? Use logs!

P (S|E) ∝ P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S)

Is there any potential for trouble here?
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Inference in Naive 
Bayes Revisited

• Recall that

• We are multiplying lots of small numbers 
together => danger of underflow!

• Solution? Use logs!

P (S|E) ∝ P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S)
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Inference in Naive 
Bayes Revisited

• Now we add “regular” numbers -- little 
danger of over- or underflow errors!

log(P (S|E)) ∝ log(P (A|S)P (¬B|S)P (F |S)P (¬K|S)P (. . . |S)P (S))

∝ log(P (A|S))+log(P (¬B|S))+log(P (F |S))+log(P (¬K|S))+log(P (. . . |S))+log(P (S)))
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Learning The Structure
of Bayesian Networks
• General idea: look at all possible network 

structures and pick one that fits observed 
data best

• Impossibly slow: exponential number of 
networks, and for each we have to learn 
parameters, too!

• What do we do if searching the space 
exhaustively is too expensive?
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Learning The Structure
of Bayesian Networks

• Local search!

• Start with some network structure

• Try to make a change (add, delete or 
reverse node)

• See if the new network is any better
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Learning The Structure
of Bayesian Networks

• What network structure should we start 
with?

• Random with uniform prior?

• Networks that reflects our (or experts’) 
knowledge of the field?
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Learning The Structure
of Bayesian Networks
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Learning The Structure
of Bayesian Networks
• We have just described how to get an ML 

or MAP estimate of the structure of a 
Bayes Net

• What would the Bayes estimate look like?

• Find all possible networks

• Calculate their posteriors

• When doing inference: result weighed 
combination of all networks!
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