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What is Search For?

§ Models of the world: single agent, deterministic actions, 
fully observed state, discrete state space

§ Planning: sequences of actions
§ The path to the goal is the important thing
§ Paths have various costs, depths
§ Heuristics to guide, fringe to keep backups

§ Identification: assignments to variables
§ The goal itself is important, not the path
§ All paths at the same depth (for some formulations)
§ CSPs are specialized for identification problems



Constraint Satisfaction Problems

§ Standard search problems:
§ State is a “black box”: arbitrary data structure
§ Goal test: any function over states
§ Successor function can be anything

§ Simple example of a formal representation 
language

§ Allows useful general-purpose algorithms with 
more power than standard search algorithms

§ Constraint satisfaction problems (CSPs):
§ A special subset of search problems
§ State is defined by variables Xi  with values from a 

domain D (sometimes D depends on i)
§ Goal test is a set of constraints specifying allowable 

combinations of values for subsets of variables



Example: N-Queens

§ Formulation 1:
§ Variables:
§ Domains:
§ Constraints



Example: N-Queens

§ Formulation 2:
§ Variables:

§ Domains:

§ Constraints:

Implicit:

Explicit:

-or-



Example: Map-Coloring
§ Variables:

§ Domain:

§ Constraints: adjacent regions must have 
different colors

§ Solutions are assignments satisfying all 
constraints, e.g.:

 



Constraint Graphs
§ Binary CSP: each constraint relates (at most) two 

variables
§ Binary constraint graph: nodes are variables, arcs 

show constraints

§ General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!



Example: Cryptarithmetic

§ Variables (circles):

§ Domains:

§ Constraints (boxes):



Example: Sudoku

§ Variables:

§ Domains:

§ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

§ Each (open) square

§ {1,2,…,9}



Example: The Waltz Algorithm

§ The Waltz algorithm is for interpreting line drawings of 
solid polyhedra

§ An early example of a computation posed as a CSP 

§ Look at all intersections
§ Adjacent intersections impose constraints on each other

?



Varieties of CSPs

§ Discrete Variables
§ Finite domains

§ Size d means O(dn) complete assignments
§ E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

§ Infinite domains (integers, strings, etc.)
§ E.g., job scheduling, variables are start/end times for each job
§ Linear constraints solvable, nonlinear undecidable

§ Continuous variables
§ E.g., start/end times for Hubble Telescope observations
§ Linear constraints solvable in polynomial time by LP methods 

(see cs170 for a bit of this theory)



Varieties of Constraints
§ Varieties of Constraints

§ Unary constraints involve a single variable (equiv. to shrinking domains):
 

§ Binary constraints involve pairs of variables:

§ Higher-order constraints involve 3 or more variables:
    e.g., cryptarithmetic column constraints

§ Preferences (soft constraints):
§ E.g., red is better than green
§ Often representable by a cost for each variable assignment
§ Gives constrained optimization problems
§ (We’ll ignore these until we get to Bayes’ nets)



Real-World CSPs

§ Assignment problems: e.g., who teaches what class
§ Timetabling problems: e.g., which class is offered when 

and where?
§ Hardware configuration
§ Transportation scheduling
§ Factory scheduling
§ Floorplanning
§ Fault diagnosis
§ … lots more!

§ Many real-world problems involve real-valued 
variables…



Standard Search Formulation
§ Standard search formulation of CSPs 

(incremental)

§ Let's start with a straightforward, dumb 
approach, then fix it

§ States are defined by the values assigned so 
far
§ Initial state: the empty assignment, {}
§ Successor function: assign a value to an 

unassigned variable
§ Goal test: the current assignment is complete and 

satisfies all constraints



Search Methods

§ What does BFS do?

§ What does DFS do?



DFS, and BFS would be much worse!



Backtracking Search

§ Idea 2: Only allow legal assignments at each point
§ I.e. consider only values which do not conflict previous assignments

§ Might have to do some computation to figure out whether a value is ok

§ “Incremental goal test”

§ Depth-first search for CSPs with these two improvements is called 
backtracking search (useless name, really)

§ Backtracking search is the basic uninformed algorithm for CSPs

§ Can solve n-queens for n ≈ 25

§ Idea 1: Only consider a single variable at each point
§ Variable assignments are commutative, so fix ordering

§ I.e., [WA = red then NT = green] same as [NT = green then WA = red]

§ Only need to consider assignments to a single variable at each step

§ How many leaves are there?



Backtracking Search

§ What are the choice points?



Backtracking Example



Backtracking



Are we 
done?



Improving Backtracking

§ General-purpose ideas give huge gains in speed

§ Ordering:
§ Which variable should be assigned next?
§ In what order should its values be tried?

§ Filtering: Can we detect inevitable failure early?

§ Structure: Can we exploit the problem structure?



Forward Checking
§ Idea: Keep track of remaining legal values for 

unassigned variables (using immediate constraints)
§ Idea: Terminate when any variable has no legal values

WA SA
NT Q

NSW
V



Forward 
Checking



Are We 
Done?



Constraint Propagation
§ Forward checking propagates information from assigned to adjacent 

unassigned variables, but doesn't detect more distant failures:

WA SA
NT Q

NSW
V

§ NT and SA cannot both be blue!
§ Why didn’t we detect this yet?
§ Constraint propagation repeatedly enforces constraints (locally)



Arc Consistency
§ Simplest form of propagation makes each arc consistent

§ X → Y is consistent iff for every value x there is some allowed y

WA SA
NT Q

NSW
V

• If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• What’s the downside of arc consistency?
• Can be run as a preprocessor or after each assignment 



Arc Consistency

§ Runtime: O(n2d3), can be reduced to O(n2d2)
§ … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]



Constraint
Propagation



Are We 
Done?



Limitations of Arc Consistency

§ After running arc 
consistency:
§ Can have one solution 

left
§ Can have multiple 

solutions left
§ Can have no solutions 

left (and not know it)

What went 
wrong here?



K-Consistency*

§ Increasing degrees of consistency
§ 1-Consistency (Node Consistency): 

Each single node’s domain has a value 
which meets that node’s unary 
constraints

§ 2-Consistency (Arc Consistency): For 
each pair of nodes, any consistent 
assignment to one can be extended to 
the other

§ K-Consistency: For each k nodes, any 
consistent assignment to k-1 can be 
extended to the kth node.

§ Higher k more expensive to compute
§ (You need to know the k=2 algorithm)



Ordering: Minimum Remaining Values

§ Minimum remaining values (MRV):
§ Choose the variable with the fewest legal values

§ Why min rather than max?
§ Also called “most constrained variable”
§ “Fail-fast” ordering



Ordering: Degree Heuristic

§ Tie-breaker among MRV variables
§ Degree heuristic:

§ Choose the variable participating in the most 
constraints on remaining variables

§ Why most rather than fewest constraints?



Ordering: Least Constraining Value

§ Given a choice of variable:
§ Choose the least constraining 

value
§ The one that rules out the fewest 

values in the remaining variables
§ Note that it may take some 

computation to determine this!

§ Why least rather than most?

§ Combining these heuristics 
makes 1000 queens feasible



Propagation 
with 

Ordering



Problem Structure
§ Tasmania and mainland are 

independent subproblems
§ Identifiable as connected 

components of constraint 
graph

§ Suppose each subproblem 
has c variables out of n total

§ Worst-case solution cost is 
O((n/c)(dc)), linear in n
§ E.g., n = 80, d = 2, c =20

§ 280 = 4 billion years at 10 
million nodes/sec

§ (4)(220) = 0.4 seconds at 10 
million nodes/sec



Tree-Structured CSPs

§ Choose a variable as root, order
 variables from root to leaves such
 that every node's parent precedes
 it in the ordering 

§ For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ For i = 1 : n, assign Xi consistently with Parent(Xi)

§ Runtime: O(n d2)



Tree-Structured CSPs

§ Theorem: if the constraint graph has no loops, the CSP can 
be solved in O(n d2) time!
§ Compare to general CSPs, where worst-case time is O(dn)

§ This property also applies to logical and probabilistic 
reasoning: an important example of the relation between 
syntactic restrictions and the complexity of reasoning.



Nearly Tree-Structured CSPs

§ Conditioning: instantiate a variable, prune its neighbors' 
domains

§ Cutset conditioning: instantiate (in all ways) a set of 
variables such that the remaining constraint graph is a tree

§ Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for 
small c



Iterative Algorithms for CSPs

§ Greedy and local methods typically work with “complete” 
states, i.e., all variables assigned

§ To apply to CSPs:
§ Allow states with unsatisfied constraints
§ Operators reassign variable values

§ Variable selection: randomly select any conflicted 
variable

§ Value selection by min-conflicts heuristic:
§ Choose value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: h(n) = number of attacks



Performance of Min-Conflicts
§ Given random initial state, can solve n-queens in almost constant 

time for arbitrary n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP 
except in a narrow range of the ratio



Summary
§ CSPs are a special kind of search problem:

§ States defined by values of a fixed set of variables
§ Goal test defined by constraints on variable values

§ Backtracking = depth-first search with one legal variable assigned per node

§ Variable ordering and value selection heuristics help significantly

§ Forward checking prevents assignments that guarantee later failure

§ Constraint propagation (e.g., arc consistency) does additional work to constrain 
values and detect inconsistencies

§ The constraint graph representation allows analysis of problem structure

§ Tree-structured CSPs can be solved in linear time

§ Iterative min-conflicts is usually effective in practice


