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(Based on slides of Dan Weld,  Stuart 
Russell,  Marie desJardins) 



Planning 
• Given  

– a logical description of the initial situation, 

– a logical description of the goal conditions, and 

– a logical description  of a set of possible actions, 

 

• find  

– a sequence of actions (a plan of actions) that brings us 
from the initial situation to a situation in which the goal 
conditions hold. 
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Example: BlocksWorld 
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Planning Input:  
State Variables/Propositions 

• Types: block --- a, b, c 

• (on-table a) (on-table b) (on-table c) 

• (clear a)  (clear b) (clear c)  

• (arm-empty)  

• (holding a) (holding b) (holding c) 

• (on a b) (on a c) (on b a) (on b c) (on c a) (on c b) 

 

 

• (on-table ?b); clear (?b)  

• (arm-empty); holding (?b) 

• (on ?b1 ?b2) 
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No. of state variables =16 

No. of states = 216 

No. of reachable states = ? 



Planning Input: Actions 
• pickup a b,  pickup a c, … 

 

• place a b,  place a c, … 

 

• pickup-table a, pickup-table b, … 

 

• place-table a, place-table b, … 
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• pickup ?b1 ?b2 

 

• place ?b1 ?b2 

 

• pickup-table ?b 

 

• place-table ?b 

Total: 6 + 6 + 3 + 3 = 18 “ground” actions 

Total: 4 action schemata 



Planning Input: Actions (contd) 
• :action pickup ?b1 ?b2 

 :precondition 

  (on ?b1 ?b2) 

  (clear ?b1) 

  (arm-empty) 

 :effect 

   (holding ?b1)   

  (not (on ?b1 ?b2)) 

  (clear ?b2) 

  (not (arm-empty)) 
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• :action pickup-table ?b 

 :precondition 

  (on-table ?b) 

  (clear ?b) 

  (arm-empty) 

 :effect 

   (holding ?b)   

  (not (on-table ?b)) 

  (not (arm-empty)) 

   



Planning Input: Initial State 

• (on-table a) (on-table b)  

• (arm-empty) 

• (clear c) (clear b) 

• (on c a) 

 

• All other propositions false  

• not mentioned  false 
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Planning Input: Goal 

• (on-table c) AND (on b c) AND (on a b)  

 

• Is this a state? 

 

• In planning a goal is a set of states 
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Planning Input Representation 

• Description of initial state of world 

– Set of propositions 

 

• Description of goal: i.e. set of worlds 

– E.g., Logical conjunction 

– Any world satisfying conjunction is a goal 

 

• Description of available actions 
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Planning vs. Problem-Solving 
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Basic difference: Explicit, logic-based representation 

• States/Situations: descriptions of the world by logical 
formulae  
 agent can explicitly reason about and communicate with 
the world. 

• Goal conditions as logical formulae vs. goal test (black box) 
 agent can reflect on its goals. 

• Operators/Actions: Axioms or transformation on formulae in 
a logical form 
 agent can gain information about the effects of actions by 
inspecting the operators. 



Classical Planning 

• Simplifying assumptions 
– Atomic time 
– Agent is omniscient (no sensing necessary).  
– Agent is sole cause of change 
– Actions have deterministic effects 

 

• STRIPS representation 
– World = set of true propositions (conjunction) 
– Actions:  

• Precondition: (conjunction of positive literals, no functions) 
• Effects (conjunction of literals, no functions) 

– Goal = conjunction of positive literals 
 

– Is Blocks World in STRIPS? 
 

– Goals = conjunctions (Rich ^ Famous) 
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Forward World-Space Search 
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Forward State-Space Search 

• Initial state: set of positive ground literals (CWA: 
literals not appearing are false) 

• Actions:  

– applicable if preconditions satisfied 

– add positive effect literals 

– remove negative effect literals 

• Goal test: checks whether state satisfies goal 

• Step cost: typically 1 
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Complexity of Planning 
• Size of Search Space 

– Size of the world state space 

 

• Size of World state space 

– exponential in problem representation 

 

• What to do? 

– Informative heuristic that can be computed in 
polynomial time! 
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Heuristics for State-Space Search 
• Count number of false goal propositions in current state 

Admissible? 

NO 

 

• Subgoal independence assumption: 
– Cost of solving conjunction is sum of cost of solving each subgoal 

independently 

– Optimistic: ignores negative interactions 

– Pessimistic: ignores redundancy 

 

– Admissible? No 

– Can you make this admissible? 
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Heuristics for State Space Search 
(contd) 

• Delete all preconditions from actions, solve 
easy relaxed problem, use length 

Admissible? 

YES 
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Planning Graph: Basic idea 
• Construct a planning graph:  encodes 

constraints on possible plans 

• Use this planning graph to compute an 
informative heuristic (Forward A*) 

• Planning graph can be built for each problem 
in polynomial time 
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The Planning Graph 
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Note: a few noops missing for clarity 



Planning Graphs 

• Planning graphs consists of a seq of levels that 
correspond to time steps in the plan. 

– Level 0 is the initial state. 

– Each level consists of a set of literals and a set of 
actions that represent what might be possible at 
that step in the plan 

– Might be is the key to efficiency 

– Records only a restricted subset of possible 
negative interactions among actions. 



Planning Graphs 

• Each level consists of  

• Literals = all those that could be true at that 
time step, depending upon the actions executed 
at preceding time steps. 

• Actions = all those actions that could have their 
preconditions satisfied at that time step, 
depending on which of the literals actually hold. 

 



PG Example 

Init(Have(Cake)) 

Goal(Have(Cake)  Eaten(Cake)) 

Action(Eat(Cake),  
PRECOND: Have(Cake) 

 EFFECT: ¬Have(Cake)  Eaten(Cake)) 

Action(Bake(Cake),  
PRECOND: ¬ Have(Cake) 

 EFFECT: Have(Cake))  



PG Example 

Create level 0 from initial problem state. 



Graph Expansion 
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Proposition level 0  

initial conditions 

Action level i 

no-op for each proposition at level i-1 

action for each operator instance whose  

preconditions exist at level i-1 

Proposition level i 

effects of each no-op and action at level i 

 

… 

… 

… 

i-1 i i+1 0 



PG Example 

Add all applicable actions. 

Add all effects to the next state.  



PG Example 

Add persistence actions (inaction = no-ops)  

to map all literals in state Si to state Si+1.  



Mutual Exclusion 
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Two actions are mutex if 
• one clobbers the other’s effects or preconditions 

• they have mutex preconditions 

    
Two proposition are mutex if 

•one is the negation of the other  

•all ways of achieving them are mutex   
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p 
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PG Example 

Identify mutual exclusions between actions 

and literals based on potential conflicts.  



Cake example 

• Level S1 contains all literals that could result from  
picking any subset of actions in A0 

– Conflicts between literals that can not occur together  
(as a consequence of the selection action) are  
represented by mutex links. 

– S1 defines multiple states and the mutex links are the constraints that 
define this set of states. 



Cake example 



Observation 1 
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Propositions monotonically increase 
(always carried forward by no-ops) 
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Observation 2 
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Actions monotonically increase 
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Observation 3 
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Proposition mutex relationships monotonically decrease 
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Observation 4 
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Action mutex relationships monotonically decrease 
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Observation 5 

Planning Graph ‘levels off’.  

• After some time k all levels are identical 

• Because it’s a finite space, the set of literals 
never decreases and mutexes don’t reappear. 
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Properties of Planning Graph 
 

• If goal is absent from last level 

– Goal cannot be achieved! 

• If there exists a path to goal 

 goal is present in the last level 

 

• If goal is present in last level 

there may not exist any path still  
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Heuristics based on Planning Graph 

• Construct planning graph starting from s 

• h(s) = level at which goal appears non-mutex 

– Admissible? 

– YES  

 

• Relaxed Planning Graph Heuristic 

– Remove negative preconditions build plan. graph 

– Use heuristic as above 

– Admissible? YES 

– More informative? NO 

– Speed: FASTER 
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Popular Application 
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Planning Summary 

 Problem solving algorithms that operate on explicit 
propositional representations of states and actions. 

 Make use of domain-independent heuristics. 

 STRIPS: restrictive propositional language 

 Heuristic search  

 forward (progression)   

 backward (regression) search [didn’t cover] 

 Local search  FF [didn’t cover] 
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