

B _{1,1}	B _{2,1}	<u> </u>	<u> </u>	P _{2,1}			KB	¬P _{1,2}
-	false	-	-	-	-	-	false	
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	:
false	true	-	-	-	-	-	false	true
false	true	false	false	false	false	true	\underline{true}	<u>true</u>
false	true	false	false	false	true	false	\underline{true}	true
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	true	true	true	true	true	true	false	false
		s in w KB =			true,	. ⊣P 1,	2 is al	so tr

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	P _{2,2}	$P_{3,1}$	KB	u
false	false	false	false	false	false	false	false	
false	false	false	false	false	false	true	false	
:	:	:	:	:	:	:	:	
false	true	false	false	false	false	false	false	
false	true	false	false	false	false	true	true	
false	true	false	false	false	true	false	\underline{true}	
false	true	false	false	false	true	true	\underline{true}	
false	true	false	false	true	false	false	false	
÷	:	:	:	:	:	:	:	
true	true	true	true	true	true	true	false	

 Algorithm: Depth-first enumeration of all models (see Fig. 7.10 in text for pseudocode)

Algorithm is sound & complete

- For *n* symbols:
- time complexity = $O(2^n)$, space = O(n)

Concepts for Other Techniques: Logical Equivalence

Two sentences are logically equivalent iff they are true in the same models: $a \equiv \beta$ iff $a \models \beta$ and $\beta \models a$ $(\alpha \land \beta) \equiv (\beta \land \alpha)$ commutativity of \land

 $\begin{array}{l} (\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv (\neg \alpha \lor \gamma) \quad \text{de Morgan} \\ \neg (\alpha \land \beta) \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\ (\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\ (\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land \end{array}$

9

Inference Technique I: Resolution

Terminology: Literal = proposition symbol or its negation E.g., A, $\neg A$, B, $\neg B$, etc. Clause = disjunction of literals E.g., (B $\lor \neg C \lor \neg D$) Resolution assumes sentences are in *Conjunctive Normal Form (CNF):* sentence = conjunction of clauses E.g., (A $\lor \neg B$) \land (B $\lor \neg C \lor \neg D$)

Resolution

Soundness of resolution inference rule (Recall logical equivalence $A \Rightarrow B \equiv \neg A \lor B$)

 $\neg (l_{1} \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_{k}) \Rightarrow l_{i}$ $\neg m_{j} \Rightarrow (m_{1} \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_{n})$ $\neg (l_{i} \vee ... \vee l_{i-1} \vee l_{i+1} \vee ... \vee l_{k}) \Rightarrow (m_{1} \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_{n})$ $(since \ l_{i} = \neg m_{j})$

