CSE 473
 Chapter 7

Inference Techniques for Logical Reasoning

Recall: Wumpus KB

Knowledge Base (KB) includes the following sentences:

- Statements currently known to be true:

$$
\begin{aligned}
& \neg \mathrm{P}_{1,1} \\
& \neg \mathrm{~B}_{1,1} \\
& \mathrm{~B}_{2,1}
\end{aligned}
$$

- Properties of the world: E.g., "Pits cause breezes in adjacent squares"

$$
\begin{aligned}
& B_{1,1} \Leftrightarrow \quad\left(P_{1,2} \vee P_{2,1}\right) \\
& B_{2,1} \Leftrightarrow \quad\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	${ }^{2,2} \mathbf{P} \text { ? }$	3,2	4,2
$\begin{array}{\|cc\|} \hline 1,1 & \\ & \mathbf{v} \\ & \text { OK } \end{array}$	$\begin{array}{\|c} 2,1 \\ \hline \mathbf{A} \\ \hline \mathbf{B} \\ \mathbf{O K} \end{array}$	${ }^{3,1} \mathbf{P}$?	4,1

Is there no pit in [1,2]?

Recall from last time:

m is a model of a sentence α if α is true in m
$M(\alpha)$ is the set of all models of α
$K B \vDash \alpha(K B$ "entails" α) iff $M(K B) \subseteq M(\alpha)$

$K B=$ wumpus-world rules + observations

Inference by Truth Table Enumeration

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$\mathbf{P}_{1,2}$	$\overline{P_{2,1}}$	$P_{2,2}$	$P_{3,1}$	KB	$\neg \mathbb{P}_{1,2}$
false	true							
false	false	false	false	false	false	true	false	true
\vdots								
false	true	false	false	false	false	false	false	true
false	true	false	fälse	false	false	true	true	true
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
\vdots								
true	false	false						

In all models in which $K B$ is true, $\neg P_{1,2}$ is also true Therefore, $K B \vDash \neg P_{1,2}$

Inference by Truth Table Enumeration

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB
false							
false	false	false	false	false	false	true	false
\vdots							
false	true	false	false	false	false	false	false
false	true	false	false	false	false	true	true
false	true	false	false	false	true	false	true
false	true	false	false	false	true	true	true
false	true	false	false	true	false	false	false
\vdots							
true	false						

$P_{2,2}$ is false in a model in which $K B$ is true
Therefore, $K B \not \nvdash P_{2,2}$

Inference by TT Enumeration

- Algorithm: Depth-first enumeration of all models (see Fig. 7.10 in text for pseudocode)
- - Algorithm is sound \& complete
- For nsymbols:
- time complexity $=O\left(2^{n}\right)$, space $=O(n)$

Concepts for Other Techniques: Logical Equivalence

Two sentences are logically equivalent iff they are true in the same models: $\alpha \equiv \beta$ iff $\alpha=\beta$ and $\beta=\alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Concepts for Other Techniques: Validity and Satisfiability

- A sentence is valid if it is true in all models (a tautology)
e.g., True, $A \vee \neg A, A \Rightarrow A,(A \wedge(A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem:
$K B \equiv a$ if and only if $(K B \Rightarrow a)$ is valid
- A sentence is satisfiable if it is true in some model e.g., $A \vee B, C$
- A sentence is unsatisfiable if it is true in no models e.g., $A \wedge \neg A$
- Satisfiability is connected to inference via the following: $K B$ = a if and only if $(K B \wedge \neg a)$ is unsatisfiable (proof by contradiction)

Inference/Proof Techniques

- Two kinds (roughly):

Model checking

- Truth table enumeration (always exponential in n)
- Efficient backtracking algorithms,
e.g., Davis-Putnam-Logemann-Loveland (DPLL)
- Local search algorithms (sound but incomplete)
e.g., randomized hill-climbing (WalkSAT)

Successive application of inference rules

- Generate new sentences from old in a sound way
- Proof = a sequence of inference rule applications
- Use inference rules as successor function in a standard search algorithm

Inference Technique I: Resolution

Terminology:
Literal = proposition symbol or its negation
E.g., $A, \neg A, B, \neg B$, etc.

Clause $=$ disjunction of literals
E.g., $(B \vee \neg C \vee \neg D)$

Resolution assumes sentences are in Conjunctive Normal Form (CNF):
sentence $=$ conjunction of clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Conversion to CNF

E.g., $B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow a)$.
$\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $a \Rightarrow \beta$ with $\neg a \vee \beta$.
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgan's rules and doublenegation:
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$
4. Apply distributivity law (\wedge over \vee) and flatten:
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$
This is in CNF - Done!

Resolution motivation

There is a pit in $[1,3]$ or There is a pit in $[2,2]$

There is no pit in $[2,2]$

There is a pit in [1,3]
More generally,

$$
\frac{C_{1} \vee \ldots \vee C_{k}, \quad \neg C_{i}}{\zeta_{1} \vee \ldots \vee C_{i-1} \vee C_{i+1} \vee \ldots \vee C_{k}}
$$

Inference Technique: Resolution

- General Resolution inference rule (for CNF):
$\frac{G_{1} \vee \ldots \vee f_{k}, m_{1} \vee \ldots \vee m_{n}}{G_{1} \vee \ldots \vee f_{i-1} \vee f_{i+1} \vee \ldots \vee q_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}}$
where f_{i} and m_{j} are complementary literals.
E.g., $\frac{P_{1,3} \vee P_{2,2,} \quad \neg P_{2,2}}{P_{1,3}}$
- Resolution is sound
 for propositional logic

Resolution

Soundness of resolution inference rule (Recall logical equivalence $A \Rightarrow B \equiv \neg A \vee B$)

$$
\begin{aligned}
& \neg\left(\zeta_{1} \vee \ldots \vee \zeta_{i-1} \vee \digamma_{i+1} \vee \ldots \vee \varsigma_{k}\right) \Rightarrow \varsigma_{i} \\
& \neg m_{\mathrm{j}} \Rightarrow\left(m_{1} \vee \ldots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \ldots \vee m_{\mathrm{n}}\right) \\
& \neg\left(\digamma_{\mathrm{i}} \vee \ldots \vee \oint_{\mathrm{i}-1} \vee \wp_{\mathrm{i}+1} \vee \ldots \vee \digamma_{\mathrm{k}}\right) \Rightarrow\left(m_{1} \vee \ldots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \ldots \vee m_{\mathrm{n}}\right) \\
& \text { (since } \varsigma_{\mathrm{i}}=\neg m_{\mathrm{j}} \text {) }
\end{aligned}
$$

Resolution algorithm

- To show $K B \neq a$, use proof by contradiction, i.e., show $K B \wedge \neg a$ unsatisfiable
function PL-RESOLUTION $(K B, \alpha)$ returns true or false
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$
$n e w \leftarrow\}$
loop do
for each C_{i}, C_{j} in clauses do
resolvents $\leftarrow \operatorname{PL}-\operatorname{Resolve}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new

Resolution example

Given no breeze in [1,1], prove there's no pit in [1,2] $K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1}$ and $a=\neg P_{1,2}$ Resolution: Convert to $C N F$ and show $K B \wedge \neg a$ is unsatisfiable

Resolution example

$$
\xrightarrow[\sim]{\neg P_{2,1} \vee B_{1,1}}
$$

Resolution example

Empty clause
(i.e., $K B \wedge \neg a$ unsatisfiable)

Inference Technique II:
 Forward/Backward Chaining

- Require sentences to be in Horn Form:
$K B=$ conjunction of Horn clauses
Horn clause $=$
- proposition symbol or
- "(conjunction of symbols) \Rightarrow symbol"
(i.e. clause with at most 1 positive literal)
E.g., $K B=C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
- F/B chaining based on "Modus Ponens" rule:

Complete for Horn clauses

- Very natural and linear time complexity in size of KB

Forward chaining

- Idea: fire any rule whose premises are satisfied in $K B$, add its conclusion to $K B$, until query q is found

$$
\begin{gathered}
P \Rightarrow Q \\
L \wedge M \Rightarrow P \\
B \wedge L \Rightarrow M \\
A \wedge P \Rightarrow L \\
A \wedge B \Rightarrow L \\
A \\
B \\
\text { Query }=\text { "Is } \mathbf{Q} \text { true?" }
\end{gathered}
$$

AND-OR Graph

Forward chaining algorithm

function PL-FC-Entails? $(K B, q)$ returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true
while agenda is not empty do $p \leftarrow \operatorname{PoP}($ agenda $)$ unless inferred $[p]$ do
inferred $[p] \leftarrow$ true
for each Horn clause c in whose premise p appears do
decrement count $[c]$
if $\operatorname{count}[c]=0$ then do if $\mathrm{HEAD}[c]=q$ then return true Push(Head $[c]$, agenda)
return false

Forward chaining is sound \& complete for Horn KB

Forward chaining example

Query = Q

(i.e. "Is Q true?")

Forward chaining example

Backward chaining

Idea: work backwards from the query q : to prove 9 by $B C$,
check if q is known already, or
prove by $B C$ all premises of some rule concluding q
Avoid loops: check if new subgoal is already on goal stack
Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Backward chaining example

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing, e.g., object recognition, routine decisions
- FC may do lots of work that is irrelevant to the goal
- $B C$ is goal-driven, appropriate for problem-solving,
e.g., How do I get an A in this class?
e.g., What is my best exit strategy out of the classroom?
e.g., How can I impress my date tonight?
- Complexity of $B C$ can be much less than linear in size of KB

The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is satisfiable.

Improvements over truth table enumeration:

1. Early termination

A clause is true if any literal is true.
A sentence is false if any clause is false.
2. Pure symbol heuristic

Pure symbol: always appears with the same "sign" in all clauses.
e.g., In the three clauses $(A \vee \neg B),(\neg B \vee \neg C),(C \vee A), A$ and B are pure, C is impure.
Make a pure symbol literal true.
3. Unit clause heuristic

Unit clause: only one literal in the clause
The only literal in a unit clause must be true.

The DPLL algorithm

function DPLL-SATISFIABLE? (s) returns true or false inputs: s, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of s symbols $\leftarrow \mathrm{a}$ list of the proposition symbols in s return DPLL(clauses, symbols, [])
function DPLL(clauses, symbols, model) returns true or false
if every clase in clauses is true in model then return true if some clause in clauses is false in model then return false P, value \leftarrow Find-Pure-Symbol (symbols, clauses, model) if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$) P, value \leftarrow Find-Unit-Clause(clauses, model)
if P is non-null then return DPLL(clauses, symbols $-P,[P=$ value \mid model $]$)
$P \leftarrow \operatorname{First}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols)
return DPLL(clauses, rest, $[P=$ true \mid model $]$) or
DPLL(clauses, rest, $[P=$ false \mid model $]$)

Next Time

- WalkSAT

- Logical Agents: Wumpus

- First-Order Logic

- To Do:

Project \#2
Finish Chapter 7
Start Chapter 8

