CSE 473

Lecture 11
Chapter 7

Inference in Propositional Logic

Recall: Propositional Logic Terminology

Terminology:
Literal $=$ proposition symbol or its negation
E.g., $A, \neg A, B, \neg B$, etc. (positive vs. negative)

Clause $=$ disjunction of literals
E.g., $(B \vee \neg C \vee \neg D)$

Conjunctive Normal Form (CNF):
sentence $=$ conjunction of clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Can think of $K B$ as a conjunction of clauses, i.e. one long sentence

Recall: Satisfiability

- A sentence is satisfiable if it is true in some model
e.g., $A \vee B, C$
- A sentence is unsatisfiable if it is true in no models
e.g., $A \wedge \neg A$
- Satisfiability is connected to inference via the following:
$K B=a$ if and only if ($K B \wedge \neg a$) is unsatisfiable (proof by contradiction)

Last Time: Propositional Inference

Two main approaches to inference:

1. Inference by Model Checking (TT enumeration)
2. Inference by Theorem Proving: Use rules of inference to construct a proof of a sentence

Review: Inference by Theorem Proving

Use rules of inference to construct a proof of a sentence

- Search for proof based on modus ponens, and-elimination, logical equivalences

One important equivalence: $A \Rightarrow B \equiv \neg A \vee B$

- Forward and backward chaining for KBs of Horn clauses (disjunctions of literals, at most 1 positive literal)

If A and B are true and $A \wedge B \Rightarrow C$, then C true

- Resolution: A single complete and sound rule

Therefore, $K B \wedge \neg \alpha$ is unsatisfiable, i.e., $K B \neq \alpha$

Review: Inference by Model Checking

Complete search algorithms
Truth table enumeration: Recursive depth-firs \dagger enumeration of assignments to all symbols (TT-entails) Heuristic search
DPLL algorithm (Davis, Putnam, Logemann, Loveland): Recursive depth-first enumeration of possible models with heuristics (such as early termination)

Incomplete local search algorithms
WalkSAT algorithm for checking satisfiability

Why Satisfiability?

Why Satisfiability?

- Recall: $K B$ = a iff $K B \wedge \neg a$ is unsatisfiable - Equivalent to proving sentence a by contradiction
- Thus, algorithms for satisfiability can be used for inference (entailment)
- However, determining if a sentence is satisfiable or not (the SAT problem) is NP-complete

Finding a fast algorithm for SAT
automatically yields fast algorithms for hundreds of difficult (NP-complete) problems

Satisfiability Examples

E.g. 2-CNF sentences (2 literals per clause):
$(\neg A \vee \neg B) \wedge(A \vee B) \wedge(A \vee \neg B)$
Satisfiable?
Yes (e.g., $A=$ true $B=$ false)
$(\neg A \vee \neg B) \wedge(A \vee B) \wedge(A \vee \neg B) \wedge(\neg A \vee B)$
Satisfiable?
No

The WalkSAT algorithm

- Local search algorithm

Incomplete: may not always find a satisfying assignment even if one exists

- Evaluation function?
= Number of satisfied clauses
WalkSAT tries to maximize this function
- Balance between greediness and randomness Each iteration:
Randomly select a symbol for flipping
Or select symbol that maximizes \# satisfied clauses

The WalkSAT algorithm

function WALKSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic p, the probability of choosing to do a "random walk" move max-flips, number of flips allowed before giving up
model \leftarrow a random assignment of true/false to the symbols in clauses for $i=1$ to max-flips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses return failure

Greed
Randomness

Hard Satisfiability Problems

 Consider random 3-CNF sentences. e.g., $(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee$$\neg B \vee A) \wedge(A \vee \neg D \vee B) \wedge(B \vee D \vee \neg C)$

Satisfiable?
(Yes, e.g., $A=B=C=$ true)
$m=$ number of clauses (Here 5)
$n=$ number of symbols (Here 4-A, B, C, D)
$m / n=1.25$ (enough symbols, usually satisfiable)
Hard instances of SAT seem to cluster near
$m / n=4.3$ (critical point)

Hard Satisfiability Problems

Hard Satisfiability Problems

Median runtime for 100 satisfiable random 3-CNF sentences, $n=50$

What about me?

Wumpus World

Putting it all together: Logical Wumpus Agents

A wumpus-world agent using propositional logic:

$$
\begin{gathered}
\rightarrow P_{1,1} \\
\neg W_{1,1}
\end{gathered}
$$

For $x=1,2,3,4$ and $y=1,2,3,4$, add (with appropriate boundary conditions):
$B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right)$
$S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, y-1} \vee W_{x+1, y} \vee W_{x-1, y}\right)$
$\mathrm{W}_{1,1} \vee \mathrm{~W}_{1,2} \vee \ldots \vee \mathrm{~W}_{4,4} \quad$ At least 1 wumpus
$\neg\left(W_{1,1} \wedge W_{1,2}\right)$
$\neg\left(W_{1,1} \wedge W_{1,3}\right) \quad$ At most 1 wumpus
$\Rightarrow 64$ distinct proposition symbols, 155 sentences!

Limitations of propositional logic

- KB contains "physics" sentences for every single square
- For every time step t and every location $[x, y]$, we need to add to the KB "physics" rules such as:

$$
L_{x, y}^{+} \wedge \text { FacingRight }^{\dagger} \wedge \text { Forward }^{\dagger} \Rightarrow L_{x+1, y}^{+1}
$$

- Rapid proliferation of sentences...

What we'd like is a way to talk about objects and groups of objects, and to define relationships between them.

Enter: First-order logic (aka "predicate logic")

Next Time

- First-Order Logic
- To Do:

Project \#2
Read chapter 8

