CSE 473
Lecture 12
Chapter 8
First-Order Logic

What's on our menu today?

Propositional vs. First-Order

Propositional logic: Deals with facts and propositions (can be true or false):
$P_{1,1}$ "there is a pit in $(1,1)$ "
George_Monkey "George is a monkey"
George_Curious "George is curious"
473student1_Monkey
(George_Monkey ^ -473student1_Monkey) \vee...

Propositional vs. First-Order

First-order logic: Deals with objects and relations
Objects: George, 473Student1, Monkey2, Raj, ...
Relations: Monkey(George), Curious(George),
Smarter(473Student1, Monkey2)
Smarter(Monkey2, Raj)
Stooges(Larry, Moe, Curly)
PokesInTheEyes(Moe, Curly)
PokesInTheEyes(473Student1, Raj)

FOL Definitions

Constants. Name a specific object. George, Monkey2, Larry, ...
Variables. Refer to an object without naming it. X, Y, ...
Relations (predicates): Properties of or relationships between objects. Curious, PokesInTheEyes, ...

FOL Definitions

Functions: Mapping from objects to objects.
banana-of, grade-of, binders-full-of
Terms. Logical expressions referring to objects banana-of(George) grade-of(stdnt1)
binders-full-of(women)
binders-full-of(men)
binders-full-of(monkeys)

More Definitions

Logical connectives: and, or, not, $\Rightarrow, \Leftrightarrow$ Quantifiers:

- For all (Universal quantifier)
- \exists There exists (Existential quantifier)

Examples

- George is a monkey and he is curious Monkey(George) ^Curious(George)
- All monkeys are curious
$\forall \mathrm{m}$: Monkey (m) \Rightarrow Curious(m)
- There is a curious monkey
$\exists \mathrm{m}$: Monkey (m) ^Curious(m)

```
            Quantifier / Connective
                        Interaction
                        M(x) == "x is a monkey"
                C(x)== "x is curious"
    "Everything is a curious monkey"
\forallx: M(x) =C(x)
    "All monkeys are curious"
\existsx: M(x)^C(x)
    "There exists a curious monkey"
\existsx: M(x) =>C(x)
"There exists an object that is either a curious monkey, or not a monkey at all"
```


Nested Quantifiers:

 Order matters!$$
\forall x \exists y P(x, y) \neq \exists y \forall x P(x, y)
$$

Example
Every monkey has a tail $\forall m \exists t \operatorname{has}(m, t) \quad \exists t \forall m \operatorname{has}(m, t)$

Try:
Everybody loves somebody vs. Someone is loved by everyone $\forall x \exists y \operatorname{loves}(x, y) \quad \exists y \forall x \operatorname{loves}(x, y)$

Semantics

Semantics = what the arrangement of symbols means in the world
Propositional logic

- Basic elements are propositional variables e.g., $P_{1,1}$ (refer to facts about the world)
- Possible worlds: mappings from variables to T/F First-order logic
- Basic elements are terms, e.g., George, bananaof(George), binders-full-of(banana-of(George))
(logical expressions that refer to objects)
- Interpretations: mappings from terms to realworld elements.

Example: A World of Kings and Legs

Syntactic elements:
Constants:
Functions:
Relations:
Richard John LeftLeg(p) On(x,y) King(p)

Interpretation II

Constants: Functions: Relations:

How Many Interpretations?

Two constants (and 5 objects in world)

- Richard, John (R, J, crown, RL, JL)
$5^{2}=25$ object mappings
One unary relation
King(x)
Infinite number of values for $x \rightarrow$ infinite mappings
Even if we restricted x to: R, J, crown, RL, JL:

$$
2^{5}=32 \text { unary truth mappings }
$$

Two binary relations
$\operatorname{Leg}(x, y) ; \operatorname{On}(x, y)$
Infinite. But even restricting x, y to five objects still yields $\mathbf{2 ~}^{25}$ mappings for each binary relation

Satisfiability, Validity, \& Entailment

S is valid if it is true in all interpretations
S is satisfiable if it is true in some interp
S is unsatisfiable if it is false in all interps
S1 $=$ S2 (S1 entails S2) if for all interps where S1 is true, S2 is also true

Propositional. Logic vs. First Order		
Ontology	Facts (P, Q,...)	Objects, Properties, Relations
Syntax	Atomic sentences Connectives	Variables \& quantification Sentences have structure: terms father-of(mother-of(X)))
Semantics	Truth Tables	Interpretations (Much more complicated)
Inference Algorithm	DPLL, WalkSAT Fast in practice	Unification Forward, Backward chaining Prolog, theorem proving
Complexity	NP-Complete	Semi-decidable May run forever if KB $\nvdash \alpha$

First-Order Wumpus World

Objects

- Squares, wumpuses, agents,
- gold, pits, stinkiness, breezes Relations
- Square topology (adjacency),
- Pits/breezes,
- Wumpus/stinkiness

Wumpus World: Squares

- Each square as an object:

Square $_{1,1}$ Square $_{1,2}, \ldots$,
Square ${ }_{3,4}$ Square $_{4,4}$
-Square topology relations?
Adjacent(Square ${ }_{1,1}$, Square $_{2,1}$)
Adjacent(Square ${ }_{3,4}$, Square $_{4,4}$)
Better: Squares as lists:
[1, 1], [1,2], ..., [4, 4]
Square topology relations:
$\forall x, y, a, b: \operatorname{Adjacent}([x, y],[a, b]) \Leftrightarrow$
$[a, b] \in\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}$

Wumpus World: Pits

-Each pit as an object:
$\mathrm{Pit}_{1,1}, \mathrm{Pit}_{1,2}, \ldots$,
$\mathrm{Pit}_{3,4}, \mathrm{Pit}_{4,4}$

- Problem?

Not all squares have pits
List only the pits we have?

$$
\mathrm{Pit}_{3,1}, \mathrm{Pit}_{3,3}, \mathrm{Pit}_{4,4}
$$

Problem?

No reason to distinguish pits (same properties)
Better: pit as unary predicate
Pit(x)
$\operatorname{Pit}([3,1]), \operatorname{Pit}([3,3]), \operatorname{Pit}([4,4])$ will be true

Wumpus World: Breezes

- Represent breezes like pits, as unary predicates: Breezy(x)
"Squares next to pits are breezy":
$\forall c, d, a, b:$
$\operatorname{Pit}([c, d]) \wedge \operatorname{Adjacent}([c, d],[a, b]) \Rightarrow \operatorname{Breezy}([a, b])$

Wumpus World: Wumpuses

- Wumpus as object:

Wumpus

- Wumpus home as unary predicate:

WumpusIn(x)

Better: Wumpus's home as a function:
Home(Wumpus) references the wumpus's home square.

FOL Reasoning: Outline

Basics of FOL reasoning
Classes of FOL reasoning methods

- Forward \& Backward Chaining
- Resolution
- Compilation to SAT

Basics: Universal Instantiation

Universally quantified sentence:

- $\forall x$: Monkey $(x) \Rightarrow$ Curious (x)

Intutively, x can be anything:

- Monkey(George) \Rightarrow Curious(George)
- Monkey(473Student1) \Rightarrow Curious(473Student1)
- Monkey(DadOf(George)) \Rightarrow Curious(DadOf(George))

Formally:
Example:

$$
\frac{\forall \times \text { S }}{\text { Subst }(\{x / p\}, \text { S) }} \quad \begin{array}{ll}
\forall x \text { Monkey }(x) \rightarrow \text { Curious }(x) \\
\text { Monkey(George) } \rightarrow \text { Curious(George) }
\end{array}
$$

x is replaced with p in $S, \quad x$ is replaced with George in S, and the quantifier removed and the quantifier removed

Basics: Existential Instantiation

Existentially quantified sentence:
$\exists x$: Monkey $(x) \wedge \neg$ Curious (x)
Intutively, x must name something. But what? Can we conclude:

Monkey(George) ^ \neg Curious(George) ???
No! S might not be true for George!
Use a Skolem Constant and draw the conclusion:
Monkey(K) ^ \neg Curious(K)
where K is a completely new symbol (stands for the monkey for which the statement is true)

Formally:
$\frac{\exists x S}{\operatorname{Subst}(\{x / K\}, S)} \quad K$ is called a Skolem constant

Basics: Generalized Skolemization

What if our existential variable is nested?
$\forall x \exists y$: Monkey $(x) \Rightarrow$ HasTail (x, y)
Can we conclude:
$\forall x$: Monkey $(x) \Rightarrow$ HasTail(x, K_Tail) ???

Nested existential variables can be replaced by Skolem functions

- Args to function are all surrounding \forall vars
$\forall x: \operatorname{Monkey}(x) \Rightarrow \operatorname{HasTail}(x, f(x))$
"tail-of" function

Motivation for Unification

What if we want to use modus ponens?
Propositional Logic:
$a \wedge b, \quad a \wedge b \Rightarrow c$
c
In First-Order Logic?
$\forall x$ Monkey $(x) \Rightarrow$ Curious(x)
Monkey(George)
????
Must "unify" x with George:
Need to substitute $\{x /$ George $\}$ in Monkey $(x) \Rightarrow$ Curious (x) to infer Curious(George)

What is Unification?

Match up expressions by finding variable values that make the expressions identical
Unify (x, y) returns most general unifier (MGU). MGU places fewest restrictions on values of variables

Examples:

- Unify(city(x), city(seattle)) returns \{x/seattle\}
- Unify(PokesInTheEyes(Moe, x), PokesInTheEyes(y, z))
returns $\{y /$ Moe, $z / x\}$
- $\{y /$ Moe, $x /$ Moe, $z /$ Moe $\}$ possible but not MGU

Unification and Substitution

Unification produces a mapping from variables to values (e.g., $\{x /$ seattle, $y /$ tacoma $\}$)
Substitution: Subst(mapping, sentence) returns new sentence with variables replaced by values

- Subst(\{x/seattle,y/tacoma\}), connected(x, y)), returns connected(seattle, tacoma)
Next Time
Reasoning with FOL
Chaining
Resolution
Compilation to SAT
To Do:Project \#2
Read Chapters 8-9

