CSE 473

Lecture 14

FOL Wrap-Up
 and
 Midterm Review

Resolution: Summary

- FOL resolution rule:
$\frac{G_{1} \vee \cdots \vee t_{k,} \quad m_{1} \vee \cdots \vee m_{n}}{\left(G_{1} \vee \cdots \vee f_{i-1} \vee f_{i+1} \vee \cdots \vee G_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}$ where Unify $\left(\mathcal{F}_{\mathrm{i}}, \neg m_{\mathrm{j}}\right)=\theta$.
- The two clauses are assumed to be standardized apart so that they share no variables.
- Example:

$$
\neg \text { Rich }(x) \vee \text { HasSwissBankAccount }(x)
$$ Rich(Willard)

HasSwissBankAccount(Willard)
with $\theta=\{x /$ Willard $\}$

Resolution: Conversion to CNF

Everyone who loves all animals is loved by someone: $\forall x[\forall y$ Animal $(y) \Rightarrow$ Loves $(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]$

1. Eliminate biconditionals and implications $\forall x \neg[\forall y \neg$ Animal $(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y$ Loves $(y, x)]$
2. Move \neg inwards: $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$ $\forall x[\exists y \neg(\neg$ Animal $(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y$ Loves $(y, x)]$ $\forall x[\exists y$ Animal(y) ^ \neg Loves $(x, y)] \vee[\exists y$ Loves $(y, x)]$

Conversion to CNF contd.

3. Standardize variables: Each quantifier uses a different variable $\forall x[\exists y$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z$ Loves $(z, x)]$
4. Skolemize: Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[$ Anima $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
5. Drop universal quantifiers:
$[\operatorname{Anima}((f(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$
6. Distribute \vee over \wedge to get $C N F$ (clauses connected by \wedge): $[$ Animal $(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\square$ Loves $(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Example: Nono and West again

- It is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles. All of its missiles were sold to it by Colonel West, who is American.
- Is Col. West a criminal?
- FOL representation:
$\forall x$ American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
$\exists x \operatorname{Owns}($ Nono, $x) \wedge \operatorname{Missile}(x)$
$\forall x \operatorname{Missile}(x) \wedge$ Owns(Nono, $x) \Rightarrow$ Sells(West, x, Nono)
$\forall x \operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
$\forall x$ Enemy $(x$, America $) \Rightarrow$ Hostile (x)
American(West)
Enemy(Nono,America)

KB in CNF and Resolution

- KB in CNF (variables not standardized):
\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg \operatorname{Sells}(x, y, z) \vee \neg$ Hostile(z) \vee Criminal (x)
Owns(Nono, M_{1}) [Skolem constant M_{1}]
Missile $\left(M_{1}\right)$
\neg Missile $(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
\neg Missile $(x) \vee$ Weapon (x)
\neg Enemy (x, America) \vee Hostile (x)
American(West)
Enemy(Nono,America)
- Resolution: Uses "proof by contradiction" Show $K B=$ a by showing $K B \wedge \neg a$ unsatisfiable
- To prove Col. West is a criminal, add \neg Criminal(West) to KB and derive empty clause

Inference Technique IV: Compilation to Prop. Logic

- Sentence S:
$\forall_{\text {city }} a, b$ Connected (a, b)
- Universe

Cities: seattle, tacoma, enumclaw

- Equivalent propositional formula?
$\mathrm{Cst} \wedge \mathrm{Cse} \wedge \mathrm{Cts} \wedge \mathrm{Cte} \wedge \mathrm{Ces} \wedge \mathrm{Cet}$
\forall converted to a bunch of \wedge 's

Compilation to Prop. Logic (cont)

- Sentence S:

$$
\exists_{\text {city }} c \text { Biggest }(c)
$$

- Universe

Cities: seattle, tacoma, enumclaw

- Equivalent propositional formula?

$$
\mathrm{Bs} \vee \mathrm{Bt} \vee \mathrm{Be}
$$

\exists converted to a bunch of v's

Compilation to Prop. Logic (cont again)

- Universe
- Cities: seattle, tacoma, enumclaw
- Firms: IBM, Microsoft, Boeing
- First-Order formula
$\forall_{\text {firm }} f \exists_{\text {city }} c$ HeadQuarters (f, c)
- Equivalent propositional formula
[(HQis \vee HQit \vee HQie) \wedge
(HQms $\vee H Q m t ~$ HQme) \wedge (HQbs $\vee \mathrm{HQb} \dagger \vee \mathrm{HQbe})]$

Hey!

- You said FO Inference is semi-decidable
- But you compiled it to SAT

Which is NP Complete

- So now we can always do the inference?!?
(might take exponential time but still decidable?)
- Something seems wrong here....????

Compilation to Prop. Logic: The Problem

- Universe
- People: homer, bart, marge
- First-Order formula $\forall_{\text {people }} p$ Male(FatherOf(p))
- Equivalent propositional formula?
[$\left(M_{\text {father-homer }} \wedge M_{\text {father-bart }} \wedge M_{\text {father-marge }} \wedge\right.$ ($M_{\text {father-father-homer }} \wedge M_{\text {father-father-bart }} \wedge$... ($M_{\text {father-father-father-homer }} \wedge$...
...]
Not a finite formula

Restricted Forms of FO Logic

- Known, Finite Universes

Compile to SAT

- Function-Free Definite Clauses (exactly one positive literal, no functions)

Aka Datalog knowledge bases

- Definite clauses + Inference Process
E.g., Logic programming using Prolog (uses depth-first backward chaining but may no \dagger terminate in some cases)

Hurray! We've reached the Midterm mark

Midterm Exam Logistics

- When: Monday, class time
- Where: Here
- What to read: Lecture slides, your notes, Chapters 1-3, 4.1, 5, and 7-9, and practice problems
- Format: Closed book, closed notes except for one $8 \frac{1^{\prime \prime}}{}{ }^{\prime} \times 11^{\prime \prime}$ sheet of notes (double-sided ok)

Friday Class: TA Help Session

- No lecture
- TA Jenn Hanson will be in class 9:3010:20am to go over some practice problems and answer questions on project or midterm

Midterm Review: Chapters 1 \& 2 Agents and Environments

- Browse Chapter 1
- Chapter 2: Definition of an Agent Sensors, actuators, environment of agent, performance measure, rational agents
- Task Environment for an Agent = PEAS description
E.g., automated taxi driver, medical expert Know how to write PEAS description for a given task environment

Review: Chapter 2 Agents and Environments

- Properties of Environments

Full vs. partial observability, deterministic vs. stochastic, episodic vs. sequential, static vs. dynamic, discrete vs. continuous, single vs. multiagent

- Agent Function vs. Agent Program

State space graph for an agent

- Types of agent programs:

Simple reflex agents, reflex agent with internal state, goal-based agents, utilitybased agents, learning agents

Review: Chapter 3

Search

- State-Space Search Problem

Start state, goal state, successor function

- Tree representation of search space

Node, parent, children, depth, path cost $g(n)$

- General tree search algorithm
- Evaluation criteria for search algorithms

Completeness, time and space complexity, optimality
Measured in terms of b, d, and m

Review: Chapter 3 Uninformed Search Strategies

- Know how the following work:

Breadth first search
Uniform cost search
Depth first search
Depth limited search
Iterative deepening search

- Implementation using FIFO/LIFO
- Completeness (or not), time/space complexity, optimality (or not) of each
- Bidirectional search
- Repeated states and Graph Search algorithm

Review: Chapter 3 Informed Search

- Best-First Search algorithm

Evaluation function $f(n)$
Implementation with priority queue

- Greedy best-first search
$f(n)=$ heuristic function $h(n)$ = estimate of cost from n to goal
E.g. $h_{\text {sLD }}(n)=$ straight-line distance to goal from n Completeness, time/space complexity, optimality

Review: Chapter 3

A* Search

- A^{*} search =
best-first search with $f(n)=g(n)+h(n)$
- Know the definition of admissible heuristic function $h(n)$
- Relationship between admissibility and optimality of A^{*}
- Consistent heuristic function
- Completeness, time/space complexity, optimality of A^{*}
- Comparing heuristics: Dominance
- Iterative-deepening A^{*}

Review: Chapter 3 and 4.1 Heuristics \& Local Search

- Relaxed versions of problems and deriving heuristics from them
- Combining multiple heuristic functions
- Pattern Databases
- Disjoint pattern databases
- Local search:

Hill climbing, global vs. local maxima

- Stochastic hill climbing
- Random Restart hill climbing

Simulated Annealing
Local Beam Search
Genetic Algorithms

Review: Chapter 5 Adversarial Search

- Games as search problems
- MAX player, MIN player
- Game Tree, n-Ply tree
- Minimax search for finding best move

Computing minimax values for nodes in a game tree
Completeness, time/space complexity, optimality

- Minimax for multiplayer games

Review: Chapter 5 Adversarial Search

- Alpha Beta Pruning

Know how to prune trees using alpha-beta
Time complexity

- Fixed Depth (cutoff) search

Evaluation functions

- Iterative deepening game tree search
- Transposition tables (what? why?)
- Game trees with chance nodes

Expectiminimax algorithm

Review: Chapter 7 Logical Agents

- What is a Knowledge Base (KB)? ASK, TELL
- Wumpus world as an example domain
- Syntax vs. Semantics for a language
- Definition of Entailment
$K B \equiv \alpha$ if and only if α is true in all worlds where KB is true.
- Models and relationship to entailment
- Soundness vs. Completeness of inference algorithms

Review: Chapter 7 Logical Agents

- Propositional Logic

Syntax and Semantics, Truth tables
Evaluating whether a statement is true/false

- Inference by Truth Table Enumeration
- Logical equivalence of sentences

Commutativity, associativity, etc.

- Definition of validity and relation to entailment
- Definition of satisfiability, unsatisfiability and relation to entailment

Review: Chapter 7 Logical Agents

- Inference Techniques

Model checking vs. using inference rules

- Resolution

Know the definition of literals, clauses, CNF
Converting a sentence to CNF
General Resolution inference rule

- Using Resolution for proving statements

To show $K B \neq a$, show $K B \wedge \neg a$ is unsatisfiable by deriving the empty clause via resolution

Review: Chapter 7
 Logical Agents

- Forward and Backward chaining

Know definition of Horn clauses
AND-OR graph representation
Modus ponens inference rule
Know how forward \& backward chaining work

- DPLL algorithm

How is it different from TT enumeration?

- WalkSAT: Know how it works

Evaluation function, 3-CNF
m / n ratio and relation to hardness of SAT

Review: Chapter 8
 First-Order Logic (FOL)

- First-Order Logic syntax and semantics Constants, variables, functions, terms, relations (or predicates), atomic sentences
Logical connectives: and, or, not, $\Rightarrow, \Leftrightarrow$
Quantifiers: \forall and \exists
- Know how to express facts in FOL

Interaction between quantifiers and connectives
Nesting of quantifiers

- Interpretations, validity, satisfiability, and entailment

Review: Chapter 9 Inference in FOL

- FOL Inference Techniques Universal instantiation Existential instantiation
Skolemization: Skolem constants, Skolem functions Unification
Know how to compute most general unifier (MGU)
Generalized Modus Ponens (GMP) and Lifting Forward chaining using GMP Backward chaining using GMP Resolution in FOL
Standardizing apart variables, converting to CNF
Compilation to Propositional Logic and using SAT solvers

