CSE 473

Lecture 15

Markov Decision Processes (MDPs)

"Heads I do, tails I'm outta here."

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

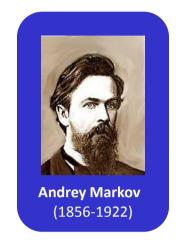
Course Overview: Where are we?

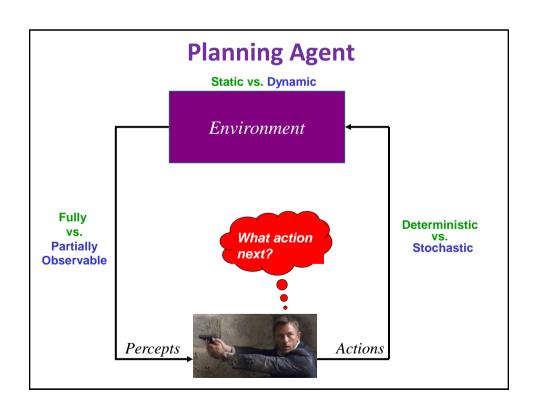
- Introduction & Agents
- Search and Heuristics
- Adversarial Search
- Logical Knowledge Representation
- Markov Decision Processes (MDPs)
- Reinforcement Learning
- Uncertainty & Bayesian Networks
- Machine Learning

MDPs

Markov Decision Processes

- Planning Under Uncertainty
- Mathematical Framework
- Bellman Equation
- Value Iteration
- Policy Iteration
- Reinforcement Learning



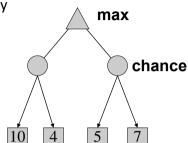


Review: Expectimax

- What if we don't know what the result of an action will be? E.g.,
 - In Solitaire, next card is unknown

• In Pacman, the ghosts act randomly

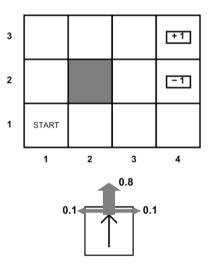
- Can do expectimax search
 - Max nodes as in minimax search
 - Chance nodes, like min nodes, except the outcome is uncertain take average (expectation) of children
 - Calculate expected utilities



- Today, we formalize this as a Markov Decision Process
 - Handles intermediate rewards & infinite search trees
 - More efficient processing

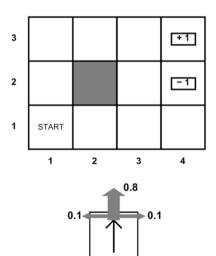
Example: Grid World

- Walls block the agent's path
- Agent's actions are noisy:
 - 80% of the time, North action takes the agent North (assuming no wall)
 - 10% actually go West
 - 10% actually go East
 - If there is a wall in the chosen direction, the agent stays put
- Small "living" penalty (e.g., -0.04) each step
- Big reward/penalty (e.g., +1 or 1) comes at the end
- Goal: maximize sum of rewards



Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Probability that action a in s leads to s'
 - i.e., P(s' | s,a)
 - Also called "the model"
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state



What is Markov about MDPs?

- "Markov" generally means that
 - Given the present state, the future is independent of the past

Andrey Markov (1856-1922)

For Markov decision processes, "Markov" means:

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

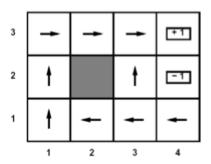
Next state only depends on current state and action

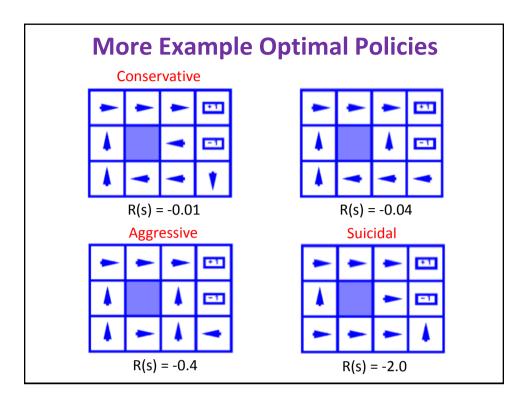
Solving MDPs

- In deterministic search problems, want an optimal path or plan (sequence of actions) from start to a goal
- MDP: Stochastic actions, don't know what next state will be
- Instead of path/plan, use an optimal policy $\pi^*: S \rightarrow A$
 - Policy π prescribes an action for every state
 - Defines a reflex agent
 - An optimal policy maximizes expected reward if followed

Solving MDPs

Optimal policy when R(s, a, s') = -0.04 for all non-terminals s

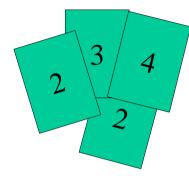




Example: High-Low Card Game

Example: High-Low

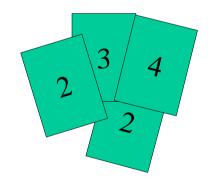
- Suppose three card types: 2, 3, 4
 - Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, say "high" or "low"
- New card is revealed
 - If you're right, you win the points shown on the new card
 - Tie: no reward, choose again
 - If you're wrong, game ends



- Differences from expectimax problems:
 - #1: get rewards as you go
 - #2: you might play forever!

High-Low as an MDP

- States:
 - 2, 3, 4, done
- Actions:
 - High, Low
- Model: T(s, a, s'):
 - $P(s'=4 \mid 4, Low) = 1/4$
 - $P(s'=3 \mid 4, Low) = 1/4$
 - $P(s'=2 \mid 4, Low) = 1/2$
 - P(s'=done | 4, Low) = 0
 - $P(s'=4 \mid 4, High) = 1/4$
 - $P(s'=3 \mid 4, High) = 0$
 - $P(s'=2 \mid 4, High) = 0$
 - P(s'=done | 4, High) = 3/4
 - ...



- Rewards: R(s, a, s'):
 - Number shown on s' if s'> s ∧ a="High" etc.
 - 0 otherwise
- Start: 3

Next Time

- Value iteration
- Finding the optimal policy
- To Do
 - Read chapters 13 and 17

15