CSE 473

Lecture 15

Markov Decision Processes (MDPs)

Course Overview: Where are we?

- Introduction \& Agents
- Search and Heuristics
- Adversarial Search
- Logical Knowledge Representation
- Markov Decision Processes (MDPs)
- Reinforcement Learning
- Uncertainty \& Bayesian Networks
- Machine Learning

MDPs

Markov Decision Processes

- Planning Under Uncertainty
- Mathematical Framework
- Bellman Equation
- Value Iteration
- Policy Iteration
- Reinforcement Learning

Planning Agent

Review: Expectimax

- What if we don't know what the result of an action will be? E.g.,
- In Solitaire, next card is unknown
- In Pacman, the ghosts act randomly
- Can do expectimax search
- Max nodes as in minimax search
- Chance nodes, like min nodes, except the outcome is uncertain take average (expectation) of children
- Calculate expected utilities

- Today, we formalize this as a Markov Decision Process
- Handles intermediate rewards \& infinite search trees
- More efficient processing

Example: Grid World

- Walls block the agent's path
- Agent's actions are noisy:
- 80% of the time, North action takes the agent North (assuming no wall)
- 10% - actually go West
- 10% - actually go East
- If there is a wall in the chosen direction, the agent stays put
- Small "living" penalty (e.g., -0.04) each step
- Big reward/penalty (e.g., +1 or - 1) comes at the end
- Goal: maximize sum of rewards

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that action a in s leads to s'
- i.e., P(s' | s,a)
- Also called "the model"
- A reward function $\mathrm{R}\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}\right)$
- Sometimes just $R(s)$ or $R\left(s^{\prime}\right)$
- A start state
- Maybe a terminal state
3
2
1

\qquad

Solving MDPs

- In deterministic search problems, want an optimal path or plan (sequence of actions) from start to a goal
- MDP: Stochastic actions, don't know what next state will be
- Instead of path/plan, use an optimal policy $\pi^{*}: S \rightarrow A$
- Policy π prescribes an action for every state
- Defines a reflex agent
- An optimal policy maximizes expected reward if followed

Solving MDPs

Optimal policy when
$R\left(s, a, s^{\prime}\right)=-0.04$
for all non-terminals s

Example: High-Low Card Game

Example: High-Low

- Suppose three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, say "high" or "low"
- New card is revealed
- If you're right, you win the points shown on the new card
- Tie: no reward, choose again
- If you're wrong, game ends

- Differences from expectimax problems:
- \#1: get rewards as you go
- \#2: you might play forever!

High-Low as an MDP

- States:
- 2, 3, 4, done
- Actions:
- High, Low
- Model: T(s, a, s'):
- $P\left(s^{\prime}=4 \mid 4\right.$, Low $)=1 / 4$
- $P\left(s^{\prime}=3 \mid 4\right.$, Low $)=1 / 4$
- $P\left(s^{\prime}=2 \mid 4\right.$, Low $)=1 / 2$
- $P\left(s^{\prime}=\right.$ done $\mid 4$, Low $)=0$

- $P\left(s^{\prime}=4 \mid 4\right.$, High $)=1 / 4$
- $P\left(s^{\prime}=3 \mid 4\right.$, High $)=0$
- $P\left(s^{\prime}=2 \mid 4\right.$, High $)=0$
- $P\left(s^{\prime}=\right.$ done $\mid 4$, High $)=3 / 4$
- Rewards: R(s, a, s'):
- Number shown on s^{\prime} if $s^{\prime}>s$ $\wedge a=" H i g h "$ etc.
- 0 otherwise
- ...
- Start: 3

Next Time

- Value iteration
- Finding the optimal policy
- To Do
- Read chapters 13 and 17

