
11/2/2012

1

CSE 473

Lecture 16

Markov Decision Processes (MDPs)

Part II

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Last Time: High-Low as an MDP
 States:

• 2, 3, 4, done
 Actions:

• High, Low
 Model: T(s, a, s’):

• P(s’=4 | 4, Low) = 1/4
• P(s’=3 | 4, Low) = 1/4
• P(s’=2 | 4, Low) = 1/2
• P(s’=done | 4, Low) = 0
• P(s’=4 | 4, High) = 1/4
• P(s’=3 | 4, High) = 0
• P(s’=2 | 4, High) = 0
• P(s’=done | 4, High) = 3/4
• …

3

• Rewards: R(s, a, s’):
• Number shown on s’ if

s’< s a=“Low” etc.
• 0 otherwise

• Start: 3

Twice as
many 2’s

11/2/2012

2

Search Tree: High-Low

Low High

High Low High Low

, Low , High

T = 0.5,

R = 2

T = 0.25,

R = 0

T = 0,

R = 0

T = 0.25,

R = 0

done

MDP Search Trees

 Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) is called a

transition

T(s,a,s’) = P(s’|s,a)

Reward = R(s,a,s’)

s,a,s’

s is a

state

(s, a) is a

“Q-state”

11/2/2012

3

Utilities of Reward Sequences

 What is an “optimal” policy?

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0)

• Need to define utility of a sequence of rewards

 Idea 1:
 Additive utility:

Defining Utilities

 Problem: Infinite state sequences have

 infinite total reward

 Solutions:

• Impose a Finite Horizon (deadline):

• Terminate episodes after a fixed T steps (e.g. life)

• Gives nonstationary policies (depends on time left)

• Absorbing state: guarantee that a terminal state will
eventually be reached (like “done” for High-Low)

• Discounting: Make infinite sum finite using (0 < < 1)

3

11/2/2012

4

Discounting Rewards

 Typically discount
rewards by < 1 each
time step

• Sooner rewards have
higher utility than
later rewards

• Also helps the
algorithms converge

1

2

Optimal Utilities and Policy

 Define the value of a state s:
V*(s) = expected utility starting in s and acting optimally

 Define the value of a Q-state (s,a):
Q*(s,a) = expected utility starting in s, taking action a and

thereafter acting optimally
 Define the optimal policy:

*(s) = optimal action from state s

Values Optimal Policy

11/2/2012

5

Bellman Equation
 Simple one-step look-ahead recursive

relationship between optimal utility values

 Start with:

 Combine to get Bellman Equation:

Richard Bellman
(1920-1984)

a

s

s, a

s,a,s’

s’

T

Q*

V*

V*

recursive

Why not use Expectimax?

 Problems:
• The tree is usually infinite
• Same states appear over and over
• Need to search once for each state

 Idea: Value iteration
• Compute optimal values for all states

all at once iteratively (using successive
approximations)

• Bottom-up dynamic programming
• Simple table look-up for any state

11/2/2012

6

Value Iteration Idea

 Why should this work?
 If discounting, distant rewards become

negligible
 If terminal states reachable from

everywhere, fraction of episodes not
ending becomes negligible

 Otherwise, can get infinite expected utility
and this approach actually won’t work

 Calculate estimates Vk
*(s)

• The optimal value considering only next k time steps
(next k rewards)

• As k , Vk approaches the optimal value

Value Iteration
 Idea:

• Start with V0
*(s) = 0, which we know is right (why?)

• Given Vi
*, calculate the values for all states for depth i+1:

• This is called a value update or Bellman update
• Repeat until convergence

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values

11/2/2012

7

Example: Bellman Updates
Example: =0.9, noise=0.2,

living penalty=0

?

?

? ? ? ?

?

? ?

= 0.72

Example: Value Iteration

 Information propagates outward from terminal
states and eventually all states have correct value
estimates

V1 V2

11/2/2012

8

Example: Value Iteration (Movie)

Next Time

 Finding the optimal policy

 Reinforcement Learning

 To Do

• Read chapters 17 and 21

17

