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CSE 473 
 

Lecture 16 
 

Markov Decision Processes (MDPs) 

Part II 

© CSE AI faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore 

Last Time: High-Low as an MDP 
 States:  

• 2, 3, 4, done 
 Actions:  

• High, Low 
 Model: T(s, a, s’): 

• P(s’=4 | 4, Low) = 1/4   
• P(s’=3 | 4, Low) = 1/4 
• P(s’=2 | 4, Low) = 1/2 
• P(s’=done | 4, Low) = 0 
• P(s’=4 | 4, High) = 1/4  
• P(s’=3 | 4, High) = 0 
• P(s’=2 | 4, High) = 0 
• P(s’=done | 4, High) = 3/4 
• … 
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• Rewards: R(s, a, s’): 
• Number shown on s’ if  

s’< s  a=“Low” etc. 
• 0 otherwise 

• Start: 3 

Twice as 
many 2’s 
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Search Tree: High-Low 

Low High 

High Low   High Low 

, Low , High 

T = 0.5, 

R = 2 

T = 0.25, 

R = 0 

T = 0, 

R = 0 

T = 0.25, 

R = 0 

done 

MDP Search Trees 

 Each MDP state gives an expectimax-like search tree 

a 

s 

s’ 

s, a 

(s,a,s’) is called a 

transition 

T(s,a,s’) = P(s’|s,a) 

Reward = R(s,a,s’) 

s,a,s’ 

s is a 

state 

(s, a) is a 

“Q-state” 
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Utilities of Reward Sequences 

 What is an “optimal” policy? 

• Each transition s,a,s’ produces a reward (+ve, -ve, or 0) 

• Need to define utility of a sequence of rewards 

 Idea 1: 
 Additive utility: 

 

 

Defining Utilities 

 Problem: Infinite state sequences have  

      infinite total reward 

 Solutions: 

• Impose a Finite Horizon (deadline): 

• Terminate episodes after a fixed T steps (e.g. life) 

• Gives nonstationary policies ( depends on time left) 

• Absorbing state: guarantee that a terminal state will 
eventually be reached (like “done” for High-Low) 

• Discounting: Make infinite sum finite using   (0 <  < 1)  

3 
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Discounting Rewards 

 Typically discount 
rewards by  < 1 each 
time step 

• Sooner rewards have 
higher utility than 
later rewards 

• Also helps the 
algorithms converge 

1 
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Optimal Utilities and Policy 

 Define the value of a state s: 
V*(s) = expected utility starting in s and acting optimally 

 Define the value of a Q-state (s,a): 
Q*(s,a) = expected utility starting in s, taking action a and 

thereafter acting optimally 
 Define the optimal policy: 

*(s) = optimal action from state s 

Values Optimal Policy 
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Bellman Equation 
 Simple one-step look-ahead recursive 

relationship between optimal utility values 

 Start with: 

 

 

 
 

 Combine to get Bellman Equation: 

Richard Bellman 
(1920-1984) 

a 

s 

s, a 

s,a,s’ 

s’ 

T 

Q* 

V* 

V* 

recursive 

Why not use Expectimax? 

 Problems: 
• The tree is usually infinite  
• Same states appear over and over  
• Need to search once for each state 

 Idea: Value iteration 
• Compute optimal values for all states 

all at once iteratively (using successive 
approximations) 

• Bottom-up dynamic programming 
• Simple table look-up for any state 
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Value Iteration Idea 

 Why should this work? 
 If discounting, distant rewards become 

negligible 
 If terminal states reachable from 

everywhere, fraction of episodes not 
ending becomes negligible 

 Otherwise, can get infinite expected utility 
and this approach actually won’t work 

 Calculate estimates Vk
*(s) 

• The optimal value considering only next k time steps 
(next k rewards) 

• As k , Vk approaches the optimal value 

Value Iteration 
 Idea: 

• Start with V0
*(s) = 0, which we know is right (why?) 

• Given Vi
*, calculate the values for all states for depth i+1: 

• This is called a value update or Bellman update 
• Repeat until convergence 

 Theorem: will converge to unique optimal values 
 Basic idea: approximations get refined towards optimal values 
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Example: Bellman Updates 
Example: =0.9, noise=0.2, 

living penalty=0 

? 

? 

? ? ? ? 

? 

? ? 

= 0.72 

Example: Value Iteration 

 Information propagates outward from terminal 
states and eventually all states have correct value 
estimates 

V1 V2 
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Example: Value Iteration (Movie) 

Next Time 

 Finding the optimal policy 

 Reinforcement Learning 

 To Do 

• Read chapters 17 and 21 

17 


