CSE 473

Lecture 16

Markov Decision Processes (MDPs) Part III

Last Time: High-Low as an MDP

- States:
- 2, 3, 4, done
- Actions:
- High, Low
- Model: T(s, a, s'):
- $P\left(s^{\prime}=4 \mid 4\right.$, Low $)=1 / 4$
- $P\left(s^{\prime}=3 \mid 4\right.$, Low $)=1 / 4$
- $P\left(s^{\prime}=2 \mid 4\right.$, Low $)=1 / 2$
- $P\left(s^{\prime}=d o n e \mid 4\right.$, Low $)=0$

- $P\left(s^{\prime}=4 \mid 4\right.$, High $)=1 / 4$
- $P\left(s^{\prime}=3 \mid 4\right.$, High $)=0$
- $P\left(s^{\prime}=2 \mid 4, \mathrm{High}\right)=0$
- Rewards: R(s, a, s'):
- $P\left(s^{\prime}=\right.$ done $\mid 4$, High $)=3 / 4$
- Number shown on s^{\prime} if $s^{\prime}<\mathrm{s} \wedge \mathrm{a}=$ "Low" etc.
- 0 otherwise
- ...
- Start: 3

MDP Search Trees

- Each MDP state gives an expectimax-like search tree

Utilities of Reward Sequences

- What is an "optimal" policy?
- Each transition s,a, s' produces a reward (+ve, -ve, or 0)
- Need to define utility of a sequence of rewards
- Idea 1:
- Additive utility:

$$
U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+r_{1}+r_{2}+\cdots
$$

Defining Utilities

- Problem: Infinite state sequences have infinite total reward
- Solutions:

- Impose a Finite Horizon (deadline):
- Terminate episodes after a fixed T steps (e.g. life)
- Gives nonstationary policies (π depends on time left)
- Absorbing state: guarantee that a terminal state will eventually be reached (like "done" for High-Low)
- Discounting: Make infinite sum finite using $\gamma(0<\gamma<1)$

$$
\begin{aligned}
& U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+\gamma r_{1}+\gamma^{2} r_{2} \cdots \\
& U\left(\left[r_{0}, \ldots r_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} r_{t} \leq R_{\max } /(1-\gamma)
\end{aligned}
$$

Discounting Rewards

$$
U\left(\left[r_{0}, \ldots r_{\infty}\right]\right)=\sum_{t=0}^{\infty} \gamma^{t} r_{t} \leq R_{\max } /(1-\gamma)
$$

- Typically discount rewards by $\gamma<1$ each time step
- Sooner rewards have higher utility than later rewards
- Also helps the algorithms converge

Optimal Utilities and Policy

- Define the value of a state s:
$V^{*}(s)=$ expected utility starting in s and acting optimally
- Define the value of a Q -state (s, a):
$Q^{*}(s, a)=$ expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy:
$\pi^{*}(s)=$ optimal action from state s

Bellman Equation

- Simple one-step look-ahead recursive relationship between optimal utility values
- Start with:

$$
\begin{aligned}
& V^{*}(s)=\max _{a} Q^{*}(s, a) \\
& Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Richard Bellman (1920-1984)

- Combine to get Bellman Equation:

$$
V^{*}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

Why not use Expectimax?

- Problems:
- The tree is usually infinite
- Same states appear over and over
- Need to search once for each state
- Idea: Value iteration
- Compute optimal values for all states all at once iteratively (using successive approximations)
- Bottom-up dynamic programming
- Simple table look-up for any state

Value Iteration Idea

- Calculate estimates $\mathrm{V}_{\mathrm{k}}{ }^{*}(\mathrm{~s})$
- The optimal value considering only next k time steps (next k rewards)
- As $\mathrm{k} \rightarrow \infty, \mathrm{V}_{\mathrm{k}}$ approaches the optimal value
- Why should this work?
- If discounting, distant rewards become negligible
- If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
- Otherwise, can get infinite expected utility and this approach actually won't work

Value Iteration

- Idea:
- Start with $\mathrm{V}_{0}{ }^{*}(\mathrm{~s})=0$, which we know is right (why?)
- Given $\mathrm{V}_{\mathrm{i}}^{*}$, calculate the values for all states for depth $\mathrm{i}+1$:

$$
V_{i+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right]
$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values

Example: Bellman Updates

Example: $\gamma=0.9$, noise $=0.2$,

$V_{i+1}(s)=\max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right]=\max _{a} Q_{i+1}(s, a)$
$Q_{1}(\langle 3,3\rangle$, right $)=\sum_{s^{\prime}} T\left(\langle 3,3\rangle\right.$, right, $\left.s^{\prime}\right)\left[R\left(\langle 3,3\rangle\right.\right.$, right, $\left.\left.s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right]$
$=0.8 *[0.0+0.9 * 1.0]+0.1 *[0.0+0.9 * 0.0]+0.1 *[0.0+0.9 * 0.0]$
$=0.72$

Example: Value Iteration

V_{1}

0	0	0.72	+1
0		0	$\boxed{-1}$
0	0	0	0
1	2	3	4

3	V_{2}			
	0	0.52	0.78	+1
2	0		0.43	-1
1	0	0	0	0
	1	2	3	4

- Information propagates outward from terminal states and eventually all states have correct value estimates

Example: Value Iteration (Movie)

Next Time

- Finding the optimal policy
- Reinforcement Learning
- To Do
- Read chapters 17 and 21

