

Value Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration For all s: $V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$
 - Time: O(|A|·|S|²)
 - Space: O(|S|)
- Num of iterations
 - Can prove that it can be exponential in the discount factor γ

Policy Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Time: O(|S|³ + |A|·|S|²)
 - Space: O(|S|)
- Num of iterations
 - Unknown, but can be fast in practice
 - Convergence is guaranteed

Two main approaches to RL

- Model-based approaches:
 - Explore environment & learn model T=P(s'|s,a) and R(s,a,s')
 - Use model to compute policy MDP-style
 - Works well when state-space is small
- Model-free approach:
 - Don't learn a model
 - Learn value function (Q value) or policy *directly*
 - Works better when state space is large

Next Time

- Model-Free Reinforcement learning
 - Q-learning
- To Do
 - Finish Chapter 17
 - Read Chapter 21
 - Start Project #3