CSE 473
 Lecture 19
 (Chapter 21 \& 13)

Q Learning and Uncertainty

Today's Outline

- Feature-based Q Learning
- Uncertainty
- Probability Theory
- Inference by Enumeration

Recall: Q-Learning

- Online sample-based Q-value iteration.
- At each time step:
- Execute action and get new sample (s,a,s’,r)
- Incorporate new sample into running average of Q :
$Q(s, a) \leftarrow(1-\alpha) Q(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right)$
where α is the learning rate $(0<\alpha<1)$.
- Update policy:

$$
\pi(s)=\arg \max Q(s, a)
$$

Problem: Generalization

- Let's say we discover through experience that this "trapped" state is bad:
- In naïve Q learning, we know nothing about related states such as this one and their Q values

- Or even this third one!

Feature-Based Representations

- Solution: Describe a state using a vector of features (properties)
- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
- Distance to closest ghost
- Distance to closest dot

- Number of ghosts
- $1 /\left(\right.$ dist to dot) ${ }^{2}$
- Is Pacman in a tunnel? (0/1)
- etc.
- Can also describe a Q-state (s, a) with features (e.g. whether action in a state moves closer to food)

Approximating Q-values using Features

- Write a Q function as a linear weighted combination of feature values:

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

Need to learn the weights w_{i} - how?

Recall:

We want Q to approximate sample-based average:

$$
Q(s, a) \leftarrow \frac{1}{t} \sum_{t \text { samples }}\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right)
$$

where:
$Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)$
Find w_{i} that minimize error for each sample:
$\left|\left(r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right)-Q(s, a)\right|^{2}$

Feature-based Q-learning

transition $=\left(s, a, r, s^{\prime}\right)$
Error $=\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a)$
$w_{i} \leftarrow w_{i}+\alpha[\quad$ Error $\quad] f_{i}(s, a)$
Intuitive interpretation:

- Weights of active features (f_{i} is 1 or high value) adjusted
- If a feature is active and the $Q(s, a)$ prediction does not match the desired value:
$\left[r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)\right]$
then change the weights according to positive/negative error.

Example: Q-Pacman

$Q(s, a)=4.0 f_{D O T}(s, a)-1.0 f_{G S T}(s, a)$
$f_{D O T}(s$, NORTH $)=0.5$
$f_{G S T}(s$, NORTH $)=1.0$
$Q(s, a)=+1$
$R\left(s, a, s^{\prime}\right)=-500$ error $=-501$
$w_{D O T} \leftarrow 4.0+\alpha[-501] 0.5$
$w_{G S T} \leftarrow-1.0+\alpha[-501] 1.0$
$Q(s, a)=3.0 f_{D O T}(s, a)-3.0 f_{G S T}(s, a)$

$a=$ NORTH $r=-500$

$=-1.5$ Learning correctly decreases Q value as required!

Q-learning Pac-Man (no features)

Q-learning, no features, 50 learning trials

Q-learning Pac-Man (no features)

Q-learning, no features, 1000 learning trials

Q-learning Pac-Man (with features)

Feature-based Q-learning, 50 learning trials

What if Pac-Man does not know the exact state and only gets local sensor readings about the state
(e.g., camera, laser range finder)?

Enter Uncertainty...

Example: Catching a flight

- Suppose you have a flight at 6pm
- When should you leave for SeaTac?
- What are the traffic conditions?
- How crowded is security?
- Leaving time before 6pm
- 20 min

P (arrive-in-time)

- $\quad 30 \mathrm{~min}$
0.05
- $\quad 45 \mathrm{~min}$
0.25
- $\quad 60 \mathrm{~min}$
- 120 min
0.50
0.75
- 1 day
0.98
0.99999

Probability Theory: Beliefs about events Utility theory: Representation of preferences

Decision about when to leave depends on both: Decision Theory = Probability + Utility Theory

What Is Probability?

- Probability: Calculus for dealing with nondeterminism and uncertainty
- Where do the numbers for probabilities come from?
- Frequentist view (numbers from experiments)
- Objectivist view (numbers inherent properties of universe)
- Subjectivist view (numbers denote agent's beliefs)

Why Should You Care?

- The world is full of uncertainty
- Incomplete knowledge of the world
- Noisy sensor readings
- Ambiguous sensor readings (e.g., images)
- Probability: new foundation for AI (\& CS!)
- "Big Data" is today’s buzz word!
- Statistics and CS are both about data
- Statistics lets us summarize and understand it
- Statistics is the basis for most learning

Logic vs. Probability

Symbol: Q, R, ...	Random variable: Q, R, ...
Boolean values: T, F	Values/Domain: you specify e.g. \{heads, tails\}, Reals
State of the world: Assignment of T/F to all symbols $Q, R \ldots$	Atomic event: a complete assignment of values to Q, R, \ldots - Mutually exclusive - Exhaustive

Types of Random Variables

Propositional or Boolean random variables e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉

Weather $=$ rain is a proposition
Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., Temp $=21.6$; also allow, e.g., Temp <22.0.

Arbitrary Boolean combinations of basic propositions

Axioms of Probability Theory

Just 3 are enough to build entire theory!

1. All probabilities between 0 and 1 $0 \leq P(A) \leq 1$
2. $P($ true $)=1$ and P (false) $=0$
3. Probability of disjunction of events is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Prior Probability

Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.2$ and $P($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=\begin{gathered}
\langle 0.72,0.1,0.08,0.1\rangle \\
\text { sunny, rain, cloudy, snow }
\end{gathered} \text { (normalized, i.e., sums to } 1 \text {) }
$$

Joint Probability

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathbf{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

$$
\begin{array}{l|llll}
\text { Weather }= & \text { sunny } & \text { rain } & \text { cloudy } & \text { snow } \\
\hline \text { Cavity }=\text { true } & 0.144 & 0.02 & 0.016 & 0.02 \\
\text { Cavity }=\text { false } & 0.576 & 0.08 & 0.064 & 0.08
\end{array}
$$

Next time, we will see how any question can be answered by the joint distribution

Next Time

- Probabilistic Inference
- Conditional Independence
- Bayesian Networks
- To Do
- Project 3
- Chapter 13 and 14

