CSE 473

Lecture 19 (Chapter 21 & 13)

Q Learning and Uncertainty

© CSE Al faculty + Chris Bishop, Dan Klein, Stuart Russell, Andrew Moore

Today's Outline

- Feature-based Q Learning
- Uncertainty
 - Probability Theory
 - Inference by Enumeration

Recall: Q-Learning

- Online sample-based Q-value iteration.
- At each time step:
 - Execute action and get new sample (s,a,s',r)
 - Incorporate new sample into running average of Q: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r+\gamma \max_{a'} Q(s',a'))$ where α is the learning rate $(0 < \alpha < 1)$.
 - Update policy:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

Problem: Generalization

- Let's say we discover through experience that this "trapped" state is bad:
- In naïve Q learning, we know nothing about related states such as this one and their Q values

Or even this third one!

Feature-Based Representations

- Solution: Describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.

 Can also describe a Q-state (s, a) with features (e.g. whether action in a state moves closer to food)

Approximating Q-values using Features

 Write a Q function as a linear weighted combination of feature values:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Need to learn the weights w_i – how?

Recall:

We want *Q* to approximate sample-based average:

$$Q(s,a) \leftarrow \frac{1}{t} \sum_{t \text{ samples}} \left(r + \gamma \max_{a'} Q(s',a') \right)$$

where:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Find w_i that *minimize error* for each sample:

$$\left| (r + \gamma \max_{a'} Q(s', a')) - Q(s, a) \right|^2$$

Feature-based Q-learning

$$\begin{aligned} transition &= (s, a, r, s') \\ & \text{Error} &= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \\ w_i &\leftarrow w_i + \alpha \left[\text{Error} \right] f_i(s, a) \end{aligned}$$

Intuitive interpretation:

- Weights of active features (f_i is 1 or high value) adjusted
- If a feature is active and the Q(s,a) prediction does not match the desired value:

$$r + \gamma \max_{s'} Q(s', a')$$

then change the weights according to positive/negative error.

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, \text{NORTH}) = 0.5$$

$$f_{GST}(s, \text{NORTH}) = 1.0$$

$$Q(s,a) = +1$$

$$R(s,a,s') = -500$$

$$error = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha \left[-501 \right] 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha \left[-501 \right] 1.0$$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

$$= -1.5 \quad \text{Learning correctly decreases Q value as required!}$$

Q-learning Pac-Man (no features)

Q-learning, no features, 50 learning trials

Q-learning Pac-Man (no features)

Q-learning, no features, 1000 learning trials

Q-learning Pac-Man (with features)

Feature-based Q-learning, 50 learning trials

What if Pac-Man does not know the exact state and only gets local sensor readings about the state (e.g., camera, laser range finder)?

Enter Uncertainty...

Example: Catching a flight

- Suppose you have a flight at 6pm
- When should you leave for SeaTac?
 - What are the traffic conditions?
 - How crowded is security?

Leaving time before 6pm	P(arrive-in-time)		
■ 20 min	0.05		
■ 30 min	0.25		
■ 45 min	0.50		
■ 60 min	0.75		
■ 120 min	0.98		
■ 1 day	0.99999		

Probability Theory: Beliefs about events
Utility theory: Representation of preferences

Decision about when to leave depends on both: Decision Theory = Probability + Utility Theory

What Is Probability?

- Probability: Calculus for dealing with nondeterminism and uncertainty
- Where do the numbers for probabilities come from?
 - Frequentist view (numbers from experiments)
 - Objectivist view (numbers inherent properties of universe)
 - Subjectivist view (numbers denote agent's beliefs)

Why Should You Care?

- The world is full of uncertainty
 - Incomplete knowledge of the world
 - Noisy sensor readings
 - Ambiguous sensor readings (e.g., images)
- Probability: new foundation for AI (& CS!)
- "Big Data" is today's buzz word!
 - Statistics and CS are both about data
 - Statistics lets us summarize and understand it
 - Statistics is the basis for most learning

Symbol: Q, R,	Random variable: Q, R,
	Random variable: Q, K,
Boolean values: T, F	Values/Domain: you specify e.g. {heads, tails}, Reals
State of the world: Assignment of T/F to all symbols Q, R	Atomic event: a complete assignment of values to Q, R, • Mutually exclusive • Exhaustive

Types of Random Variables

Propositional or Boolean random variables e.g., Cavity (do I have a cavity?)

Discrete random variables (finite or infinite)

e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$ Weather = rain is a proposition

Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded) e.g., Temp = 21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions

Axioms of Probability Theory

Just 3 are enough to build entire theory!

- All probabilities between 0 and 1
 0 ≤ P(A) ≤ 1
- 2. P(true) = 1 and P(false) = 0
- 3. Probability of disjunction of events is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Prior Probability

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.2 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

 $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \text{(normalized, i.e., sums to 1)}$ sunny, rain, cloudy, snow

Joint Probability

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s

 $\mathbf{P}(Weather, Cavity) = \mathbf{a} \ 4 \times 2 \text{ matrix of values:}$

Weather =	sunny	rain	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Next time, we will see how any question can be answered by the joint distribution

Next Time

- Probabilistic Inference
- Conditional Independence
- Bayesian Networks
- To Do
 - Project 3
 - Chapter 13 and 14