

Recall: Prior Probability

Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.2 and P(Weather = sunny) = 0.72correspond to belief prior to arrival of any (new) evidence

<image><image><image><image>

Start with the	e joint distr	toothache		⊐ toothache	
		catch	\neg catch	catch	\neg catch
	cavity	.108	.012	.072	.008
	\neg cavity	.016	.064	.144	.576

P(toothache)= .108+.012+.016+.064 = .20 or 20%

Problems with Enumeration

Worst case time: O(dⁿ) where d = max arity of random variables e.g., d = 2 for Boolean (T/F) and n = number of random variables
Space complexity also O(dⁿ)
Size of joint distribution
Problem: Hard/impossible to estimate all O(dⁿ) entries of joint for large problems

Conditional Independence

Joint distribution:

 $\mathbf{P}(Toothache, Cavity, Catch)$ has $2^3 - 1 = 7$ independent entries

If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:

(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if I haven't got a cavity: (2) $P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$

 $\begin{array}{l} Catch \text{ is } \textit{conditionally independent of } Toothache \text{ given } Cavity: \\ \mathbf{P}(Catch|Toothache, Cavity) = \mathbf{P}(Catch|Cavity) \end{array}$

Instead of 7 entries in the joint distribution, only need 5 (why?)

Power of Cond. Independence

- Often, conditional independence can reduce the storage complexity of the joint distribution from exponential to linear!!
- Conditional independence is the most basic & robust form of knowledge in uncertain environments.

Recall: Conditional Probability

- P(x | y) is the probability of x given y
- Assumes that y is the only info known.

