CSE 473

Lecture 20
 (Chapters 13 \& 14)
 Probabilistic Inference

Today's Outline

- Probabilistic Inference
- Conditional Independence
- Bayesian Networks

Recall: Prior Probability

Prior or unconditional probabilities of propositions
e.g., $P($ Cavity $=$ true $)=0.2$ and $P($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence

Recall: Joint Probability

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s
$\mathbf{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

$$
\begin{array}{l|llll}
\text { Weather }= & \text { sunny } & \text { rain } & \text { cloudy } & \text { snow } \\
\hline \text { Cavity }=\text { true } & 0.144 & 0.02 & 0.016 & 0.02 \\
\text { Cavity }=\text { false } & 0.576 & 0.08 & 0.064 & 0.08
\end{array}
$$

We will see later how any question can be answered by the joint distribution

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes that B is the only info known.
- Defined as: ${ }_{P(A \mid B)=} \frac{P(A, B)}{P(B)}=\frac{P(A \wedge B)}{P(B)}$

Conditional Probability Examples

- $\mathrm{P}($ Cavity $=$ true Toothache $=$ true $)=$ probability of cavity given toothache
- Notation for conditional distribution:
$\mathbf{P}($ Cavity | Toothache $)=2$-element vector of 2-element vectors (2 Pr values given Toothache is true and 2 Pr values given Toothache is false)
- If we know more, e.g., Cavity = true, then we have
$\mathrm{P}($ cavity \mid toothache, cavity $)=1$
- New evidence may be irrelevant, allowing simplification:
- $\mathrm{P}($ cavity \mid toothache, sunny $)=\mathrm{P}($ cavity \mid toothache $)=0.8$

Dilemma at the Dentist's

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?

Probabilistic Inference by Enumeration

Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ, sum the atomic events where it is true:

$$
P(\phi)=\Sigma_{\omega: \omega \equiv \phi} P(\omega)
$$

$$
\begin{aligned}
P(\text { toothache }) & =.108+.012+.016+.064 \\
& =.20 \text { or } 20 \%
\end{aligned}
$$

Inference by Enumeration

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

$P($ toothachevcavity $)=$?

$$
\begin{aligned}
& .20+.108+.012+.072+.008-(.108+.012) \\
& \quad=.28
\end{aligned}
$$

Inference by Enumeration

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \leftarrow \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

Problems with Enumeration

- Worst case time: O(dn)
where $\mathrm{d}=\mathrm{max}$ arity of random variables
e.g., d = 2 for Boolean (T/F)
and $\mathrm{n}=$ number of random variables
- Space complexity also O($\left.\mathrm{d}^{\mathrm{n}}\right)$
- Size of joint distribution
- Problem: Hard/impossible to estimate all
$\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$ entries of joint for large problems

Do we need to compute all $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$ possible entries of joint distribution?

Independence

- Variables A and B are independent iff:

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

Therefore, if A and B are independent:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)
$$

i.e., $P(A \wedge B)=P(A) P(B)$

Why is independence useful?

Independence

\mathbf{P} (Toothache, Catch, Cavity, Weather)

$$
=\mathbf{P}(\text { Toothache }, \text { Catch }, \text { Cavity }) \mathbf{P}(\text { Weather })
$$

Only $2 * 2 * 2+4=12$ values needed
32 entries reduced to 12 ; for n independent biased coins, $2^{n} \rightarrow n$
Complete independence is powerful but rare. What to do if it doesn't hold?

Conditional Independence

Joint distribution:
$\mathbf{P}($ Toothache, Cavity, Catch $)$ has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ catch \mid toothache, cavity $)=P($ catch \mid cavity $)$

The same independence holds if I haven't got a cavity:
(2) $P($ catch \mid toothache,\neg cavity $)=P($ catch $\mid \neg$ cavity $)$

Catch is conditionally independent of Toothache given Cavity: $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$

Instead of 7 entries in the joint distribution, only need 5 (why?)

Conditional Independence II

Given:
$\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
Joint probability distribution:
$\mathbf{P}($ Catch,Toothache, Cavity)
$=\mathbf{P}($ Catch \mid Toothache, Cavity $) \mathbf{P}($ Toothache, Cavity $)$
$=\mathbf{P}($ Catch \mid Toothache, Cavity $) \mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Cavity $)$
$2+2+1$
= 5 independent numbers

Power of Cond. Independence

- Often, conditional independence can reduce the storage complexity of the joint distribution from exponential to linear!!
- Conditional independence is the most basic \& robust form of knowledge in uncertain environments.

Thomas Bayes

- Publications:

Reverand Thomas Bayes Nonconformist minister (1702-1761)

- Divine Benevolence, or an Attempt to Prove That the Principal End of the Divine Providence and Government is the Happiness of His Creatures (1731)
- An Introduction to the Doctrine of Fluxions (1736)
- An Essay Towards Solving a Problem in the Doctrine of Chances (1764)

Recall: Conditional Probability

- $\mathrm{P}(x \mid y)$ is the probability of x given y
- Assumes that y is the only info known.
- Defined as:

$$
\begin{aligned}
& P(x \mid y)=\frac{P(x, y)}{P(y)} \\
& P(y \mid x)=\frac{P(y, x)}{P(x)}=\frac{P(x, y)}{P(x)}
\end{aligned}
$$

Bayes' Rule

$$
\begin{aligned}
& P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x) \\
& \text { i.e. } \\
& P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
\end{aligned}
$$

What is this useful for?

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

Bayes' rule is used to Compute Diagnostic Probability from Causal Probability
 $$
P(\text { Cause } \mid E f f e c t)=\frac{P(E f \text { fect } \mid \text { Cause }) P(\text { Cause })}{P(E f f e c t)}
$$

E.g. let M be meningitis, S be stiff neck
$P(M)=0.0001$,
$P(S)=0.1$,
$P(S \mid M)=0.8$ (note: these can be estimated from patients)
$P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)}=\frac{0.8 \times 0.0001}{0.1}=0.0008$
Note: posterior probability of meningitis still very small! (But chance of M did increase from 0.0001 to 0.0008)

Next Time

- Bayesian Networks
- To Do
- Project 3
- Read Chapter 14

